Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 27, 2024 - Issue 1
386
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chronic adolescent stress alters GR-FKBP5 interactions in the hippocampus of adult female rats

, , , , , & show all
Article: 2312467 | Received 31 Aug 2023, Accepted 25 Jan 2024, Published online: 01 Apr 2024

References

  • Anacker, C., Cattaneo, A., Musaelyan, K., Zunszain, P. A., Horowitz, M., Molteni, R., Luoni, A., Calabrese, F., Tansey, K., Gennarelli, M., Thuret, S., Price, J., Uher, R., Riva, M. A., & Pariante, C. M. (2013). Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 1–14. https://doi.org/10.1073/pnas.1300886110
  • Anacker, C., Zunszain, P. A., Carvalho, L. A., & Pariante, C. M. (2011). The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology, 36(3), 415–425. https://doi.org/10.1016/j.psyneuen.2010.03.007
  • Bekhbat, M., Howell, P. A., Rowson, S. A., Kelly, S. D., Tansey, M. G., & Neigh, G. N. (2019). Chronic adolescent stress sex-specifically alters central and peripheral neuro-immune reactivity in rats. Brain, Behavior, and Immunity, 76, 248–257. https://doi.org/10.1016/j.bbi.2018.12.005
  • Bekhbat, M., Mukhara, D., Dozmorov, M. G., Stansfield, J. C., Benusa, S. D., Hyer, M. M., Rowson, S. A., Kelly, S. D., Qin, Z., Dupree, J. L., Tharp, G. K., Tansey, M. G., & Neigh, G. N. (2021). Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology, 46(5), 949–958. https://doi.org/10.1038/s41386-021-00970-2
  • Bekhbat, M., Rowson, S. A., & Neigh, G. N. (2017). Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Frontiers in Neuroendocrinology, 46, 15–31. https://doi.org/10.1016/j.yfrne.2017.05.001
  • Binder, E. B., Salyakina, D., Lichtner, P., Wochnik, G. M., Ising, M., Pütz, B., Papiol, S., Seaman, S., Lucae, S., Kohli, M. A., Nickel, T., Künzel, H. E., Fuchs, B., Majer, M., Pfennig, A., Kern, N., Brunner, J., Modell, S., Baghai, T., … Muller-Myhsok, B. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36(12), 1319–1325. https://doi.org/10.1038/ng1479
  • Boncompagni, S., Arthurton, L., Akujuru, E., Pearson, T., Steverding, D., Protasi, F., & Mutungi, G. (2015). Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. The Journal of Physiology, 593(12), 2679–2692. https://doi.org/10.1113/JP270502
  • Bourke, C. H., & Neigh, G. N. (2011). Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic. Hormones and Behavior, 60(1), 112–120. https://doi.org/10.1016/j.yhbeh.2011.03.011
  • Bourke, C. H., Raees, M. Q., Malviya, S., Bradburn, C. A., Binder, E. B., & Neigh, G. N. (2013). Glucocorticoid sensitizers Bag1 and Ppid are regulated by adolescent stress in a sex-dependent manner. Psychoneuroendocrinology, 38(1), 84–93. https://doi.org/10.1016/j.psyneuen.2012.05.001
  • Carter, B. S., Meng, F., & Thompson, R. C. (2012). Glucocorticoid treatment of astrocytes results in temporally dynamic transcriptome regulation and astrocyte-enriched mRNA changes in vitro. Physiological Genomics, 44(24), 1188–1200. https://doi.org/10.1152/physiolgenomics.00097.2012
  • Cover, K. K., Maeng, L. Y., Lebrón-Milad, K., & Milad, M. R. (2014). Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology. Translational Psychiatry, 4(8), e422–e422. https://doi.org/10.1038/tp.2014.67
  • Dattilo, V., Amato, R., Perrotti, N., & Gennarelli, M. (2020). The emerging role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in major depressive disorder: Hypothesis and mechanisms. Frontiers in Genetics, 11, 826. https://doi.org/10.3389/fgene.2020.00826
  • Davies, T. H., Ning, Y.-M., & Sánchez, E. R. (2002). A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. The Journal of Biological Chemistry, 277(7), 4597–4600. https://doi.org/10.1074/jbc.C100531200
  • Edvinsson, Å., Hoyer, A., Hansson, M., Kallak, T. K., Sundström-Poromaa, I., Skalkidou, A., & Lager, S. (2020). Placental glucocorticoid receptors are not affected by maternal depression or SSRI treatment. Upsala Journal of Medical Sciences, 125(1), 30–36. https://doi.org/10.1080/03009734.2019.1702126
  • Engel, M., Eggert, C., Kaplick, P. M., Eder, M., Röh, S., Tietze, L., Namendorf, C., Arloth, J., Weber, P., Rex-Haffner, M., Geula, S., Jakovcevski, M., Hanna, J. H., Leshkowitz, D., Uhr, M., Wotjak, C. T., Schmidt, M. V., Deussing, J. M., Binder, E. B., & Chen, A. (2018). The role of m(6)A/m-RNA methylation in stress response regulation. Neuron, 99(2), 389–403.e9. e389. https://doi.org/10.1016/j.neuron.2018.07.009
  • Fan, B., Ma, J., Zhang, H., Liao, Y., Wang, W., Zhang, S., Lu, C., & Guo, L. (2021). Association of FKBP5 gene variants with depression susceptibility: A comprehensive meta-analysis. Asia-Pacific Psychiatry: official Journal of the Pacific Rim College of Psychiatrists, 13(2), e12464. https://doi.org/10.1111/appy.12464
  • Feldman, S., & Weidenfeld, J. (1999). Glucocorticoid receptor antagonists in the hippocampus modify the negative feedback following neural stimuli. Brain Research, 821(1), 33–37. https://doi.org/10.1016/s0006-8993(99)01054-9
  • Foilb, A. R., Lui, P., & Romeo, R. D. (2011). The transformation of hormonal stress responses throughout puberty and adolescence. The Journal of Endocrinology, 210(3), 391–398. https://doi.org/10.1530/JOE-11-0206
  • Gaali, S., Kirschner, A., Cuboni, S., Hartmann, J., Kozany, C., Balsevich, G., Namendorf, C., Fernandez-Vizarra, P., Sippel, C., Zannas, A. S., Draenert, R., Binder, E. B., Almeida, O. F., Rühter, G., Uhr, M., Schmidt, M. V., Touma, C., Bracher, A., & Hausch, F. (2015). Selective inhibitors of the FK506-binding protein 51 by induced fit. Nature Chemical Biology, 11(1), 33–37. https://doi.org/10.1038/nchembio.1699
  • Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021(1), 77–85. https://doi.org/10.1196/annals.1308.009
  • Girard-Joyal, O., Faragher, A., Bradley, K., Kane, L., Hrycyk, L., & Ismail, N. (2015). Age and sex differences in c-Fos expression and serum corticosterone concentration following LPS treatment. Neuroscience, 305, 293–301. https://doi.org/10.1016/j.neuroscience.2015.06.035
  • Hadamitzky, M., Herring, A., Kirchhof, J., Bendix, I., Haight, M. J., Keyvani, K., Lückemann, L., Unteroberdörster, M., & Schedlowski, M. (2018). Repeated Systemic Treatment with Rapamycin Affects Behavior and Amygdala Protein Expression in Rats. The International Journal of Neuropsychopharmacology, 21(6), 592–602. https://doi.org/10.1093/ijnp/pyy017
  • Harrell, C. S., Burgado, J., Kelly, S. D., Johnson, Z. P., & Neigh, G. N. (2015). High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats. Psychoneuroendocrinology, 62, 252–264. https://doi.org/10.1016/j.psyneuen.2015.08.025
  • Harrell, C. S., Hardy, E., Boss-Williams, K., Weiss, J. M., & Neigh, G. N. (2013). Sex and lineage interact to predict behavioral effects of chronic adolescent stress in rats. Behavioural Brain Research, 248, 57–61. https://doi.org/10.1016/j.bbr.2013.04.003
  • Herring, A., Münster, Y., Akkaya, T., Moghaddam, S., Deinsberger, K., Meyer, J., Zahel, J., Sanchez-Mendoza, E., Wang, Y., Hermann, D. M., Arzberger, T., Teuber-Hanselmann, S., & Keyvani, K. (2016). Kallikrein-8 inhibition attenuates Alzheimer’s disease pathology in mice. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 12(12), 1273–1287. https://doi.org/10.1016/j.jalz.2016.05.006
  • Hyer, M. M., Shaw, G. A., Goswamee, P., Dyer, S. K., Burns, C. M., Soriano, E., Sanchez, C. S., Rowson, S. A., McQuiston, A. R., & Neigh, G. N. (2021). Chronic adolescent stress causes sustained impairment of cognitive flexibility and hippocampal synaptic strength in female rats. Neurobiology of Stress, 14, 100303. https://doi.org/10.1016/j.ynstr.2021.100303
  • Hyer, M. M., Wegener, A. J., Targett, I., Dyer, S. K., & Neigh, G. N. (2023). Chronic stress beginning in adolescence decreases spatial memory following an acute inflammatory challenge in adulthood. Behavioural Brain Research, 442, 114323. https://doi.org/10.1016/j.bbr.2023.114323
  • Inoue, K., Sakuma, E., Morimoto, H., Asai, H., Koide, Y., Leng, T., Wada, I., Xiong, Z. G., & Ueki, T. (2016). Serum- and glucocorticoid-inducible kinases in microglia. Biochemical and Biophysical Research Communications, 478(1), 53–59. https://doi.org/10.1016/j.bbrc.2016.07.094
  • Jinno, S., Fleischer, F., Eckel, S., Schmidt, V., & Kosaka, T. (2007). Spatial arrangement of microglia in the mouse hippocampus: a stereological study in comparison with astrocytes. Glia, 55(13), 1334–1347. https://doi.org/10.1002/glia.20552
  • Kjonigsen, L. J., Leergaard, T. B., Witter, M. P., & Bjaalie, J. G. (2011). Digital atlas of anatomical subdivisions and boundaries of the rat hippocampal region. Frontiers in Neuroinformatics, 5, 2. https://doi.org/10.3389/fninf.2011.00002
  • Lebow, M. A., Schroeder, M., Tsoory, M., Holzman-Karniel, D., Mehta, D., Ben-Dor, S., Gil, S., Bradley, B., Smith, A. K., Jovanovic, T., Ressler, K. J., Binder, E. B., & Chen, A. (2019). Glucocorticoid-induced leucine zipper "quantifies" stressors and increases male susceptibility to PTSD. Translational Psychiatry, 9(1), 178. https://doi.org/10.1038/s41398-019-0509-3
  • Li, H., Su, P., Lai, T. K., Jiang, A., Liu, J., Zhai, D., Campbell, C. T., Lee, F. H., Yong, W., Pasricha, S., Li, S., Wong, A. H., Ressler, K. J., & Liu, F. (2020). The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. The Journal of Clinical Investigation, 130(2), 877–889. https://doi.org/10.1172/JCI130363
  • Lin, C. C., Cheng, P. Y., Hsiao, M., & Liu, Y. P. (2022). Effects of RU486 in treatment of traumatic stress-induced glucocorticoid dysregulation and fear-related abnormalities: Early versus late intervention. International Journal of Molecular Sciences, 23(10), 1–17.
  • Lin, Y., Westenbroek, C., Bakker, P., Termeer, J., Liu, A., Li, X., & Ter Horst, G. J. (2008). Effects of long-term stress and recovery on the prefrontal cortex and dentate gyrus in male and female rats. Cerebral Cortex, 18(12), 2762–2774. https://doi.org/10.1093/cercor/bhn035
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Lui, P., Padow, V. A., Franco, D., Hall, B. S., Park, B., Klein, Z. A., & Romeo, R. D. (2012). Divergent stress-induced neuroendocrine and behavioral responses prior to puberty. Physiology & Behavior, 107(1), 104–111. https://doi.org/10.1016/j.physbeh.2012.06.011
  • Markham, J. A., Mullins, S. E., & Koenig, J. I. (2013). Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. The Journal of Comparative Neurology, 521(8), 1828–1843. https://doi.org/10.1002/cne.23262
  • Mifsud, K. R., & Reul, J. M. (2016). Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 113(40), 11336–11341. https://doi.org/10.1073/pnas.1605246113
  • Ostrander, M. M., Ulrich-Lai, Y. M., Choi, D. C., Richtand, N. M., & Herman, J. P. (2006). Hypoactivity of the hypothalamo-pituitary-adrenocortical axis during recovery from chronic variable stress. Endocrinology, 147(4), 2008–2017. https://doi.org/10.1210/en.2005-1041
  • Paxinos, G., & Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. Academic Press.
  • Pratt, L. A., & Brody, D. J. (2014). Depression in the U.S. household population, 2009–2012. NCHS Data Brief., no 172. Hyattsville, MD, National Center for Health Statistics.
  • Rich, E. L., & Romero, L. M. (2005). Exposure to chronic stress downregulates corticosterone responses to acute stressors. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288(6), R1628–1636. https://doi.org/10.1152/ajpregu.00484.2004
  • Romeo, R. D., Patel, R., Pham, L., & So, V. M. (2016). Adolescence and the ontogeny of the hormonal stress response in male and female rats and mice. Neuroscience and Biobehavioral Reviews, 70, 206–216. https://doi.org/10.1016/j.neubiorev.2016.05.020
  • Rowson, S. A., Bekhbat, M., Kelly, S. D., Binder, E. B., Hyer, M. M., Shaw, G., Bent, M. A., Hodes, G., Tharp, G., Weinshenker, D., Qin, Z., & Neigh, G. N. (2019). Chronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthood. Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology, 44(7), 1207–1215. https://doi.org/10.1038/s41386-019-0321-z
  • Rowson, S. A., Foster, S. L., Weinshenker, D., & Neigh, G. N. (2018). Locomotor sensitization to cocaine in adolescent and adult female Wistar rats. Behavioural Brain Research, 349, 158–162. https://doi.org/10.1016/j.bbr.2018.04.035
  • Rowson, S. A., Harrell, C. S., Bekhbat, M., Gangavelli, A., Wu, M. J., Kelly, S. D., Reddy, R., & Neigh, G. N. (2016). Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress. Frontiers in Psychiatry, 7, 102. https://doi.org/10.3389/fpsyt.2016.00102
  • Saaltink, D. J., & Vreugdenhil, E. (2014). Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cellular and Molecular Life Sciences: CMLS, 71(13), 2499–2515. https://doi.org/10.1007/s00018-014-1568-5
  • Scharf, S. H., Liebl, C., Binder, E. B., Schmidt, M. V., & Müller, M. B. (2011). Expression and regulation of the Fkbp5 gene in the adult mouse brain. PloS One, 6(2), e16883. https://doi.org/10.1371/journal.pone.0016883
  • Shi, X., Huang, Z., Zhou, G., & Li, C. (2021). Dietary Protein From Different Sources Exerted a Great Impact on Lipid Metabolism and Mitochondrial Oxidative Phosphorylation in Rat Liver. Frontiers in Nutrition, 8, 719144. https://doi.org/10.3389/fnut.2021.719144
  • Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24(4), 417–463. https://doi.org/10.1016/s0149-7634(00)00014-2
  • Sugimoto, N., Ishibashi, H., Ueda, Y., Nakamura, H., Yachie, A., & Ohno-Shosaku, T. (2019). Corticosterone inhibits the expression of cannabinoid receptor-1 and cannabinoid receptor agonist-induced decrease in cell viability in glioblastoma cells. Oncology Letters, 18(2), 1557–1563. https://doi.org/10.3892/ol.2019.10456
  • Tatro, E. T., Everall, I. P., Kaul, M., & Achim, C. L. (2009). Modulation of glucocorticoid receptor nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: implications for major depressive disorder. Brain Research, 1286, 1–12. https://doi.org/10.1016/j.brainres.2009.06.036
  • Tertil, M., Skupio, U., Barut, J., Dubovyk, V., Wawrzczak-Bargiela, A., Soltys, Z., Golda, S., Kudla, L., Wiktorowska, L., Szklarczyk, K., Korostynski, M., Przewlocki, R., & Slezak, M. (2018). Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Translational Psychiatry, 8(1), 255. https://doi.org/10.1038/s41398-018-0300-x
  • Wang, Z., Zheng, G., Li, G., Wang, M., Ma, Z., Li, H., Wang, X. Y., & Yi, H. (2020). Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation. Journal of Cellular and Molecular Medicine, 24(23), 13703–13714. https://doi.org/10.1111/jcmm.15928
  • Wei, K., Xu, Y., Zhao, Z., Wu, X., Du, Y., Sun, J., Yi, T., Dong, J., & Liu, B. (2016). Icariin alters the expression of glucocorticoid receptor, FKBP5 and SGK1 in rat brains following exposure to chronic mild stress. International Journal of Molecular Medicine, 38(1), 337–344. https://doi.org/10.3892/ijmm.2016.2591
  • Wochnik, G. M., Rüegg, J., Abel, G. A., Schmidt, U., Holsboer, F., & Rein, T. (2005). FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. The Journal of Biological Chemistry, 280(6), 4609–4616. https://doi.org/10.1074/jbc.M407498200
  • Wohleb, E. S., Hanke, M. L., Corona, A. W., Powell, N. D., Stiner, L. M., Bailey, M. T., Nelson, R. J., Godbout, J. P., & Sheridan, J. F. (2011). beta-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(17), 6277–6288. https://doi.org/10.1523/JNEUROSCI.0450-11.2011
  • Wu, C., Yosef, N., Thalhamer, T., Zhu, C., Xiao, S., Kishi, Y., Regev, A., & Kuchroo, V. K. (2013). Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature, 496(7446), 513–517. https://doi.org/10.1038/nature11984