Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 27, 2024 - Issue 1
225
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Early-age thermal manipulation and supplemental antioxidants on physiological, biochemical and productive performance of broiler chickens in hot-tropical environments

, , &
Article: 2319803 | Received 17 Sep 2023, Accepted 12 Feb 2024, Published online: 17 Apr 2024

References

  • Abd El-Hack, M. E., Abdelnour, S. A., Taha, A. E., Khafaga, A. F., Arif, M., Ayasan, T., Swelum, A. A., Abukhalil, M. H., Alkahtani, S., Aleya, L., & Abdel-Daim, M. M. (2020). Herbs as thermoregulatory agents in poultry: An overview. The Science of the Total Environment, 703, 1. https://doi.org/10.1016/j.scitotenv.2019.134399
  • Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2002). Methods for testing antioxidant activity. Analyst, 127, 183–198.
  • Akosile, O., Majekodunmi, B., Sogunle, O., Baloyi, J., Fushai, F., Bhebhe, E., & Oke, O. E. (2023). Research note: Responses of broiler chickens to in ovo feeding with clove and cinnamon extract under hot-humid environments. Poultry Science, 102(3), 102391. https://doi.org/10.1016/j.psj.2022.102391
  • Akosile, O. A., Sogunle, O. M., Majekodunmi, B. C., & Oke, O. E. (2023). In ovo injection of cinnamon or clove alters the physiology and growth of broilers in a hot-tropical environment. Translational Animal Science, 7(1), txad036. https://doi.org/10.1093/tas/txad036
  • Beckford, R. C., Ellestad, L. E., Proszkowiec-Weglarz, M., Farley, L., Brady, K., Angel, R., Liu, H.-C., & Porter, T. E. (2020). Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poultry Science, 99(12), 6317–12. https://doi.org/10.1016/j.psj.2020.09.052
  • Borges, S. A., Fischer da Silva, A. V., Majorka, A., Hooge, D. M., & Cummings, K. R. (2004). Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poultry Science, 83(9), 1551–1558. https://doi.org/10.1093/ps/83.9.1551
  • Chen, X. Y., Wei, P. P., Xu, S. Y., Geng, Z. Y., & Jiang, R. S. (2013). Rectal temperature as an indicator for heat tolerance in chickens. Animal Science Journal = Nihon Chikusan Gakkaiho, 84(11), 737–739. https://doi.org/10.1111/asj.12064
  • Cinar, M., Yildirim, E., Yigit, A. A., Yalcinkaya, I., Duru, O., Kisa, U., & Atmaca, N. (2014). Effects of dietary supplementation with vitamin C and vitamin E and their combination on growth performance, some biochemical parameters, and oxidative stress induced by copper toxicity in broilers. Biological Trace Element Research, 158(2), 186–196. https://doi.org/10.1007/s12011-014-9926-6
  • De Almeida, J. N., Dos Santos, G. R., Beteto, F. M., De Medeiros, L. G., Oba, A., Shimokomaki, M., & Soares, A. L. (2012). Dietary supplementation of chelated selenium and broiler chicken meat quality. Semina: Ciências Agrárias, 33(Supl2), 3117–3122. https://doi.org/10.5433/1679-0359.2012v33Supl2p3117
  • De Souza, L. F. A., Espinha, L. P., de Almeida, E. A., Lunedo, R., Furlan, R. L., & Macari, M. (2016). How heat stress (continuous or cyclical) interferes with nutrient digestibility, energy and nitrogen balances and performance in broilers. Livestock Science, 192, 39–43. https://doi.org/10.1016/j.livsci.2016.08.014
  • Elgendey, F., Rasha, A., Wakeel, A., Hemeda, S. A., Elshwas, A. M., Fadl, S. E., Abdelazim, A. M., Alhujaily, M., & Khalifa, O. A. (2022). Selenium and/or vitamin E upregulate the antioxidant gene expressionand parameters in broilers. BMC Veterinary Research, 18(1), 310. Page 8 of 9 https://doi.org/10.1186/s12917-022-03411-4
  • Gouda, A., El-Wardany, I., Hemid, A. A., El-Moniary, M. M. A., & Eldaly, E. F. (2015). The effect of dietary supplementation of organic chromium, organic selenium and vitamin E on physiological responses in broilers under natural summer conditions. Egyptian Journal of Nutrition and Feeds, 18(2), 263–274. (2 Special): https://doi.org/10.21608/ejnf.2015.104483
  • Grashorn, M. A. (2007). Functionality of poultry meat. Journal of Applied Poultry Research, 16(1), 99–106. https://doi.org/10.1093/japr/16.1.99
  • Gross, W. B., & Siegel, H. S. (1983). Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Diseases, 27(4), 972–979. https://doi.org/10.2307/1590198
  • Habibian, M., Ghazi, S., & Moeini, M. M. (2015). Effects of dietary selenium and vitamin e on growth performance, meat yield, and selenium content and lipid oxidation of breast meat of broilers reared under heat stress. Biological Trace Element Research, 169(1), 142–152. https://doi.org/10.1007/s12011-015-0404-6
  • Habibian, M., Ghazi, S., Moeini, M. M., & Abdolmohammadi, A. (2014). Effects of dietary selenium and Vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. International Journal of Biometeorology, 58(5), 741–752. https://doi.org/10.1007/s00484-013-0654-y
  • Halevy, O., Yahav, S. I., & Rozenboim, I. (2006). Enhancement of meat production by environmental manipulations in embryo and young broilers. World’s Poultry Science Journal, 62(3), 485–497. https://doi.org/10.1017/S0043933906001103
  • Harsini, S. G., Habibiyan, M., Moeini, M. M., & Abdolmohammadi, A. R. (2012). Effects of dietary selenium, Vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biological Trace Element Research, 148(3), 322–330. https://doi.org/10.1007/s12011-012-9374-0
  • Hirakawa, R., Nurjanah, S., Furukawa, K., Murai, A., Kikusato, M., Nochi, T., & Toyomizu, M. (2020). Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Frontiers in Veterinary Science, 7, 46. https://doi.org/10.3389/fvets.2020.00046
  • Hosseini-Mansoub, N., Chekani-Azar, S., Tehrani, A., Lotfi, A., & Manesh, M. (2010). Influence of dietary vitamin E and zinc on performance, oxidative stability and some blood measures of broiler chickens reared under heat stress (35 °C). Journal of Agrobiology, 27(2), 103–110. https://doi.org/10.2478/s10146-009-0012-1
  • Ibrahim, D., Kishawy, A. T. Y., Khater, S. I., Hamed Arisha, A., Mohammed, H. A., Abdelaziz, A. S., Abd El-Rahman, G. I., & Elabbasy, M. T. (2019). Effect of dietary modulation of selenium form and level on performance, tissue retention, quality of frozen stored meat and gene expression of antioxidant status in ross broiler chickens. Animals, 9(6), 342. https://doi.org/10.3390/ani9060342
  • Jang, I. S., Ko, Y. H., Moon, Y. S., & Sohn, S. H. (2014). Effects of vitamin C or E on the proinflammatory cytokines, heat shock protein 70 and antioxidant status in broiler chicks under summer conditions. Asian-Australasian Journal of Animal Sciences, 27(5), 749–756. https://doi.org/10.5713/ajas.2013.13852
  • Jastrebski, S. F., Lamont, S. J., & Schmidt, C. J. (2017). Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PloS One, 12(7), e0181900. https://doi.org/10.1371/journal.pone.0181900
  • Jiang, K. J., Jiao, H. C., Song, Z. G., Yuan, L., Zhao, J. P., & Lin, H. (2008). Corticosterone administration and dietary glucose supplementation enhance fat accumulation in broiler chickens. British Poultry Science, 49(5), 625–631. https://doi.org/10.1080/00071660802337241
  • Kelman, K. R., Pannier, L., Pethick, D. W., & Gardner, G. E. (2014). Selection for lean meat yield in lambs reduces indicators of oxidative metabolism in the longissimus muscle. Meat Science, 96(2 Pt B), 1058–1067. https://doi.org/10.1016/j.meatsci.2013.08.017
  • Khan, W. A., Khan, A., Anjum, A. D., & Rehman, Z.-U. (2002). Effects of induced heat stress on haematological values in broiler chicks. International Journal of Agriculture and Biology, 1560, 44–45.
  • Kpomasse, C. C., Oso, O. M., Lawal, K. O., & Oke, O. E. (2023). Juvenile growth, thermotolerance and gut histomorphology of broiler chickens fed Curcuma longa under hot-humid environments. Heliyon, 9(2), e13060. https://doi.org/10.1016/j.heliyon.2023.e13060
  • Kpomasse, C. C., Oke, O. E., Houndonougbo, F. M., & Tona, K. (2021). Broiler production challenges in the tropics: A review. https://doi.org/10.1002/vms3.435
  • Kucuk, O., Sahin, N., & Sahin, K. (2003). Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biological Trace Element Research, 94(3), 225–235. https://doi.org/10.1385/BTER:94:3:225
  • Lamberg, S. L., & Rothestein, R. (1977). Laboratory Manual of hematology and urinary analysis. Avi Publishing Company, Inc. West Povt. Connecticut, USSR.
  • Lara, L., & Rostagno, M. (2013). Impact of heat stress on poultry production. Animals: An Open Access Journal from MDPI, 3(2), 356–369. https://doi.org/10.3390/ani3020356
  • Letcher, T. M. (2019). Why do we have global warming? In: Letcher, T.M. (Ed.), Managing global warming (pp. 3–15). Academic Press
  • Leshchinsky, T., & Klasing, K. (2001). Relationship between the level of dietary vitamin E and the immune response of broiler chickens. Poultry Science, 80(11), 1590–1599. https://doi.org/10.1093/ps/80.11.1590
  • Leskovec, J., Levart, A., Perić, L., Đukić Stojčić, M., Tomović, V., Pirman, T., Salobir, J., & Rezar, V. (2019). Antioxidative effects of supplementing linseed oil-enriched diets with _-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers. Poultry Science, 98(12), 6733–6741. https://doi.org/10.3382/ps/pez389
  • Lin, H., Decuypere, E., & Buyse, J. (2006). Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 144(1), 11–17. https://doi.org/10.1016/j.cbpa.2006.01.032
  • Lin, H., Jiao, H. C., Buyse, J., & Decuypere, E. (2006). Strategies for preventing heat stress in poultry. World’s Poultry Science Journal, 62(1), 71–86. https://doi.org/10.1079/WPS200585
  • Liu, Q. W., Feng, J. H., Chao, Z., Chen, Y., Wei, L. M., Wang, F., Sun, R. P., & Zhang, M. H. (2016). The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers. Journal of Animal Physiology and Animal Nutrition, 100(2), 301–308. https://doi.org/10.1111/jpn.12368
  • Livingston, M. L., Pokoo-Aikins, A., Frost, T., Laprade, L., Hoang, V., Nogal, B., Phillips, C., & Cowieson, A. J. (2022). Effect of heat stress, dietary electrolytes, and vitamins e and c on growth performance and blood biochemistry of the broiler chicken. Frontiers in Animal Science, volume3, 807267. https://doi.org/10.3389/fanim.2022.807267
  • Lu, Z., He, X. F., Ma, B. B., Zhang, L., Li, J. L., Jiang, Y., Zhou, G. H., & Gao, F. (2019). Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poultry Science, 98(9), 3695–3704. https://doi.org/10.3382/ps/pez056
  • Luo, J., Song, J., Liu, L., Xue, B., Tian, G., & Yang, Y. (2018). Effect of epigallocatechin gallate on growth performance and serum biochemical metabolites in heat-stressed broilers. Poultry Science, 97(2), 599–606. https://doi.org/10.3382/ps/pex353
  • Maini, S., Shukla, S. K., Rastogi, S. K., Korde, J. P., & Madan, A. K. (2007). Evaluation of oxidative stress and its amelioration through certain antioxidants in broilers during summer. The Journal of Poultry Science, 44(3), 339–347. https://doi.org/10.2141/jpsa.44.339
  • Manoli, I., Alesci, S., Blackman, M. R., Su, Y. A., Rennert, O. M., & Chrousos, G. P. (2007). Mitochondria as key components of the stress response. Trends in Endocrinology and Metabolism: TEM, 18(5), 190–198. https://doi.org/10.1016/j.tem.2007.04.004
  • Marandure, T., Hamudikuwanda, H., & Mashonjowa, E. (2011). Effect of duration of early age thermal conditioning on growth and heat tolerance in broiler chickens. Electronic Journal of Environmental, Agricultural and Food Chemistry, 10(2), 1909–1917.
  • Meteyake, H. T., Bilalissi, A., Oke, O. E., Voemesse, K., & Tona, K. (2020). Effect of thermal manipulation during incubation and heat challenge during the early juvenile stage on production parameters of broilers reared under a tropical climate. European Poultry Science, 84, 1–16. https://doi.org/10.1399/eps.2020.318
  • Mujahid, A., Akiba, Y., & Toyomizu, M. (2009). Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 297, 690–698.
  • Ncho, C. M., Gupta, V., & Goel, A. (2021). Effect of thermal conditioning on growth performance and thermotolerance in broilers: A systematic review and meta-analysis. Journal of Thermal Biology, 98, 102916. https://doi.org/10.1016/j.jtherbio.2021.102916
  • Niu, Z., Liu, F., Yan, Q., & Li, L. (2009a). Effects of different levels of selenium on growth performance and immunocompetence of broilers under heat stress. Archives of Animal Nutrition, 63(1), 56–65. https://doi.org/10.1080/17450390802611610
  • Niu, Z. Y., Liu, F. Z., Yan, Q. L., & Li, W. C. (2009b). Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poultry Science, 88(10), 2101–2107. https://doi.org/10.3382/ps.2009-00220
  • Niu, Z. Y., Min, Y. N., & Liu, F. Z. (2018). Dietary vitamin E improves meat quality and antioxidant capacity in broilers by upregulating the expression of antioxidant enzyme genes. Journal of Applied Animal Research, 46(1), 397–401. https://doi.org/10.1080/09712119.2017.1309321
  • Nyuiadzi, D., Travel, A., Méda, B., Berri, C., Guilloteau, L. A., Coustham, V., Wang, Y., Tona, J. K., & Collin, A. (2017). Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens. Poultry Science, 96(12), 4261–4269. https://doi.org/10.3382/ps/pex264
  • Ognik, K., & Sembratowicz, I. (2012). Stress as a factor modifying the metabolism in poultry. A Review. Ann UMCS Zootech, 30, 34–43. https://doi.org/10.2478/v10083-012-0010-4
  • Oke, O. E. (2018). Evaluation of physiological response and performance by supplementation of Curcuma longa in broiler feed under hot humid tropical climate. Tropical Animal Health and Production, 50(5), 1071–1077. https://doi.org/10.1007/s11250-018-1532-8
  • Oke, O. E., Emeshili, U. K., Iyasere, O. S., Abioja, M. O., Daramola, J. O., Ladokun, A. O., Abiona, J. A., Williams, T. J., Rahman, S. A., Rotimi, S. O., Balogun, S. I., & Adejuyigbe, A. E. (2017). Physiological responses and performance of broiler chickens offered olive leaf extract under hot humid tropical climate. Journal of Applied Poultry Research, 26(3), 376–382. https://doi.org/10.3382/japr/pfx005
  • Oke, O. E., Oso, O. M., Logunleko, M., Uyanga, V., Akinyemi, F., Okeniyi, F., Akosile, O., Baloyi, J., & Onagbesan, O. (2022). Adaptation of the White Fulani cattle to the tropical environment. Journal of Thermal Biology, 110, 103372. https://doi.org/10.1016/j.jtherbio.2022.103372
  • Oke, O. E., Alo, E. T., Oke, F. O., Oyebamiji, Y. A., Ijaiya, M. A., Odefemi, M. A., Kazeem, R. Y., Soyode, A. A., Aruwajoye, O. M., Ojo, R. T., Adeosun, S. M., & Onagbesan, O. M. (2020). Early age thermal manipulation on the performance and physiological response of broiler. Journal of Thermal Biology, 88, 102517. https://doi.org/10.1016/j.jtherbio.2020.102517
  • Oyelola, O. B., Iyasere, O. S., Adeleye, O. O., & Oke, O. E. (2023). The influence of in ovo black cumin extract on the physiological responses of broilers under hot tropical environments. Acta Scientiarum. Animal Sciences, 46, e62653. https://doi.org/10.4025/actascianimsci.v46i1.62653
  • Paglia, D. E., & Valentine, W. N. (1976). Studies on the quantitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 159–165.
  • Placer, Z.A., Cushman, L.L., Johnson, B.C. (1996). Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems Anal. Biochemistry, 162, 359–364.
  • Pompeu, M. A., Cavalcanti, L. F., & Toral, F. L. (2018). Effect of vitamin E supplementation on growth performance, meat quality, and immune response of male broiler chickens: a meta-analysis. Livestock Science, 208, 5–13. https://doi.org/10.1016/j.livsci.2017.11.021
  • Rama Rao, S. V., Raju, M. V. L. N., Panda, A. K., Poonam, N. S., & Shyam Sunder, G. (2011). Effect of dietary α–tocopherol concentration on performance and some immune responses in broiler chickens fed on diets containing oils from different sources. British Poultry Science, 52(1), 97–105. https://doi.org/10.1080/00071668.2010.548792
  • Sahin, K., Sahin, N., Yaralioglu, S., & Onderci, M. (2002). Protective role of supplemental vitamin E and selenium on lipid peroxidation, vitamin E, vitamin A, and some mineral concentrations of Japanese quails reared under heat stress. Biological Trace Element Research, 85(1), 59–70. https://doi.org/10.1385/BTER:85:1:59
  • Ševčíková, S., Skřivan, M., Dlouhá, G., & Koucký, M. (2006). The effect of selenium source on the performance and meat quality of broiler chickens. Czech Journal of Animal Science, 51, 449–457.
  • Shim, K. S., Hwang, K. T., Son, M. W., & Park, G. H. (2006). Lipid metabolism and peroxidation in broiler chicks under chronic heat stress. Asian-Australasian Journal of Animal Sciences, 19(8), 1206–1211. https://doi.org/10.5713/ajas.2006.1206
  • Skrivan, M., Marounek, M., Dlouhá, G., & Sevcíková, S. (2008). Dietary selenium increases vitamin E contents of egg yolk and chicken meat. British Poultry Science, 49(4), 482–486. https://doi.org/10.1080/00071660802236021
  • Sun, X., Zhang, H., Sheikhahmadi, A., Wang, Y., Jiao, H., Lin, H., & Song, Z. (2015). Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). International Journal of Biometeorology, 59(2), 127–135. https://doi.org/10.1007/s00484-014-0829-1
  • Surai, P. F. (2002). Selenium in poultry nutrition 2.Reproduction, egg and meat quality and practical applications. World’s Poultry Science Journal, 58(4), 431–450. https://doi.org/10.1079/WPS20020032
  • Swain, B. K., Johri, T. S., & Majumdar, S. (2000). Effect of supplementation of vitamin E, selenium and their different combinations on the performance and immune response of broilers. British Poultry Science, 41(3), 287–292. https://doi.org/10.1080/713654938
  • Thiam, M., Barreto Sánchez, A. L., Zhang, J., Wen, J., Zhao, G., & Wang, Q. (2022). Investigation of the potential of heterophil/lymphocyte ratio as a biomarker to predict colonization resistance and inflammatory response to Salmonella enteritidis infection in chicken. Pathogens (Basel, Switzerland), 11(1), 72. https://doi.org/10.3390/pathogens11010072
  • Uyanga, V. A., Musa, T. H., Oke, O. E., Zhao, J., Wang, X., Jiao, H., Onagbesan, O. M., & Lin, H. (2023). Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Frontiers in Physiology, 14, 1123582. https://doi.org/10.3389/fphys.2023.1123582
  • Uyanga, V. A., Oke, O. E., Amevor, F. K., Zhao, J., Wang, X., Jiao, H., Onagbesan, O. M., & Lin, H. (2022). Functional roles of taurine, L-theanine, L-citrulline, and betaine during heat stress in poultry. Journal of Animal Science and Biotechnology, 13(1), 23. https://doi.org/10.1186/s40104-022-00675-6
  • Voljč, M., Levart, A., Zgur, S., & Salobir, J. (2013). The effect of _-tocopherol, sweet chestnut wood extract and their combination on oxidative stress in vivo and the oxidative stability of meat in broilers. British Poultry Science, 54(1), 144–156. https://doi.org/10.1080/00071668.2012.760190
  • Yahav, S. (2000). Domestic fowl—strategies to confront environ-mental conditions. Avian Poultry Biology Review, 11, 81–95.
  • Yahav, S., Straschnow, A., Luger, D., Shinder, D., Tanny, J., & Cohen, S. (2004). Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poultry Science, 83(2), 253–258. https://doi.org/10.1093/ps/83.2.253
  • Yalçm, S., Ozkan, S., Cabuk, M., Buyse, J., Decuypere, E., & Siegel, P. B. (2005). Effect of pre and post-natal conditioning to induce thermotolerance on body weight, physiological responses and relative asymmetry of broilers originating from young and old breeder flocks. Poultry Science, 84(6), 967–976. https://doi.org/10.1093/ps/84.6.967
  • Yalçin, S., Özkan, S., Çabuk, M., & Siegel, P. B. (2003). Criteria for evaluating husbandry practices to alleviate heat stress in broilers. Journal of Applied Poultry Research, 12(3), 382–388. https://doi.org/10.1093/japr/12.3.382
  • Yoon, I., Werner, T. M., & Butler, J. M. (2007). Effect of source and concentration of selenium on growth performance and selenium retention in broiler chickens. Poultry Science, 86(4), 727–730. https://doi.org/10.1093/ps/86.4.727
  • Zaboli, G. R., Bilondi, H. H., & Miri, A. (2013). The effect of dietary antioxidant supplements on abdominal fat deposition in broilers. Life Science Journal, 10, 328–333.
  • Zeferino, C. P., Komiyama, C. M., Pelícia, V. C., Fascina, V. B., Aoyagi, M. M., Coutinho, L. L., Sartori, J. R., & Moura, A. (2016). Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal: An International Journal of Animal Bioscience, 10(1), 163–171. https://doi.org/10.1017/S1751731115001998
  • Zhang, Q., Yang, Y., Lu, Y., & Cao, Z. (2021). iTRAQ-based quantitative proteomic analyses the cycle chronic heat stress affecting liver proteome in yellow-feather chickens. Poultry Science, 100(6), 101111. https://doi.org/10.1016/j.psj.2021.101111