Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 27, 2024 - Issue 1
435
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sex differences in body temperature and neural power spectra in response to repeated restraint stress

, , &
Article: 2320780 | Received 28 Sep 2023, Accepted 12 Feb 2024, Published online: 28 Feb 2024

References

  • Abdallah, C. G., Averill, L. A., Akiki, T. J., Raza, M., Averill, C. L., Gomaa, H., Adikey, A., & Krystal, J. H. (2019). The neurobiology and pharmacotherapy of posttraumatic stress disorder. Annual Review of Pharmacology and Toxicology, 59(1), 1–14. https://doi.org/10.1146/annurev-pharmtox-010818-021701
  • Awang SA, Pandiyan PM, Yaacob S, Ali YM, Ramidi F, Mat F. (2011). Spectral density analysis: Theta wave as mental stress indicator. In T. Kim, H. Adeli, C. Ramos, & B. H. Kang (Eds.), Signal processing, image processing and pattern recognition (pp. 103–112). Springer.
  • Bangasser, D. A., & Valentino, R. J. (2014). Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology, 35(3), 303–319. https://doi.org/10.1016/j.yfrne.2014.03.008
  • Bangasser, D. A., & Wiersielis, K. R. (2018). Sex differences in stress responses: A critical role for corticotropin-releasing factor. Hormones (Athens, Greece), 17(1), 5–13. https://doi.org/10.1007/s42000-018-0002-z
  • Bangasser, D. A., Eck, S. R., & Ordoñes Sanchez, E. (2019). Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology, 44(1), 129–139. https://doi.org/10.1038/s41386-018-0137-2
  • Bangasser, D. A., Eck, S. R., Telenson, A. M., & Salvatore, M. (2018). Sex differences in stress regulation of arousal and cognition. Physiology & Behavior, 187, 42–50. https://doi.org/10.1016/j.physbeh.2017.09.025
  • Bhatnagar, S., Lee, T. M., & Vining, C. (2005). Prenatal stress differentially affects habituation of corticosterone responses to repeated stress in adult male and female rats. Hormones and Behavior, 47(4), 430–438. https://doi.org/10.1016/j.yhbeh.2004.11.019
  • orghini, G., Vecchiato, G., Toppi, J., Astolfi, L., Maglione, A., & Isabella, R. (2012). Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 6442–6445. https://doi.org/10.1109/EMBC.2012.6347469
  • Boyle, C. E., Parkar, A., Barror, A., & Kubin, L. (2019). Noradrenergic terminal density varies among different groups of hypoglossal premotor neurons. Journal of Chemical Neuroanatomy, 100, 101651. https://doi.org/10.1016/j.jchemneu.2019.101651
  • Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E., & McCarley, R. W. (2012). Control of sleep and wakefulness. Physiological Reviews, 92(3), 1087–1187. https://doi.org/10.1152/physrev.00032.2011
  • Buynitsky, T., & Mostofsky, D. I. (2009). Restraint stress in biobehavioral research: Recent developments. Neuroscience and Biobehavioral Reviews, 33(7), 1089–1098. https://doi.org/10.1016/j.neubiorev.2009.05.004
  • Cano, G., Mochizuki, T., & Saper, C. B. (2008). Neural circuitry of stress-induced insomnia in rats. The Journal of Neuroscience, 28(40), 10167–10184. https://doi.org/10.1523/JNEUROSCI.1809-08.2008
  • Corsi-Cabrera, M., Sánchez, A. I., del-Río-Portilla, Y., Villanueva, Y., & Pérez-Garci, E. (2003). Effect of 38 h of total sleep deprivation on the waking EEG in women: Sex differences. International Journal of Psychophysiology, 50(3), 213–224. https://doi.org/10.1016/s0167-8760(03)00168-5
  • de Boer, M., Nijdam, M. J., Jongedijk, R. A., Bangel, K. A., Olff, M., Hofman, W. F., & Talamini, L. M. (2019). The spectral fingerprint of sleep problems in post-traumatic stress disorder. Sleep, 43(4), zsz269. https://doi.org/10.1093/sleep/zsz269
  • Dib, R., Gervais, N. J., & Mongrain, V. (2021). A review of the current state of knowledge on sex differences in sleep and circadian phenotypes in rodents. Neurobiology of Sleep and Circadian Rhythms, 11, 100068. https://doi.org/10.1016/j.nbscr.2021.100068
  • Dressler, O., Schneider, G., Stockmanns, G., & Kochs, E. F. (2004). Awareness and the EEG power spectrum: Analysis of frequencies. British Journal of Anaesthesia, 93(6), 806–809. https://doi.org/10.1093/bja/aeh270
  • Fernandez Rojas, R., Debie, E., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., Garratt, M., & Abbass, H. (2020). Electroencephalographic workload indicators during teleoperation of an unmanned aerial vehicle shepherding a swarm of unmanned ground vehicles in contested environments. Frontiers in Neuroscience, 14, 40. https://doi.org/10.3389/fnins.2020.00040
  • Ferri, R., Cosentino, F. I. I., Elia, M., Musumeci, S. A., Marinig, R., & Bergonzi, P. (2001). Relationship between Delta, Sigma, Beta, and Gamma EEG bands at REM sleep onset and REM sleep end. Clinical Neurophysiology, 112(11), 2046–2052. https://doi.org/10.1016/s1388-2457(01)00656-3
  • Gargiulo, A. T., Jasodanand, V., Luz, S., O’Mara, L., Kubin, L., Ross, R. J., Bhatnagar, S., & Grafe, L. A. (2021). Sex differences in stress-induced sleep deficits. Stress (Amsterdam, Netherlands), 24(5), 541–550. https://doi.org/10.1080/10253890.2021.1879788
  • Gargiulo, A. T., Peterson, L. M., & Grafe, L. A. (2021). Stress, coping, resilience, and sleep during the COVID-19 pandemic: A representative survey study of US adults. Brain and Behavior, 11(11), e2384. https://doi.org/10.1002/brb3.2384
  • Goel, N., Workman, J. L., Lee, T. T., Innala, L., & Viau, V. (2014). Sex differences in the HPA axis. Comprehensive Physiology, 4(3), 1121–1155. https://doi.org/10.1002/cphy.c130054
  • Grafe, L. A., Cornfeld, A., Luz, S., Valentino, R., & Bhatnagar, S. (2017). Orexins mediate sex differences in the stress response and in cognitive flexibility. Biological Psychiatry, 81(8), 683–692. https://doi.org/10.1016/j.biopsych.2016.10.013
  • Grafe, L. A., O’Mara, L., Branch, A., Dobkin, J., Luz, S., Vigderman, A., Shingala, A., Kubin, L., Ross, R., & Bhatnagar, S. (2020). Passive coping strategies during repeated social defeat are associated with long-lasting changes in sleep in rats. Frontiers in Systems Neuroscience, 14, 6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043017/ https://doi.org/10.3389/fnsys.2020.00006
  • Grafe, L., Miller, K. E., Ross, R. J., & Bhatnagar, S. (2024). The importance of REM sleep fragmentation in the effects of stress on sleep: Perspectives from preclinical studies. Neurobiology of Stress, 28, 100588. https://doi.org/10.1016/j.ynstr.2023.100588
  • Hayashida, S., Oka, T., Mera, T., & Tsuji, S. (2010). Repeated social defeat stress induces chronic hyperthermia in rats. Physiology & Behavior, 101(1), 124–131. https://doi.org/10.1016/j.physbeh.2010.04.027
  • Herr, K. B., Stettner, G. M., & Kubin, L. (2013). Reduced c-Fos expression in medullary catecholaminergic neurons in rats 20 h after exposure to chronic intermittent hypoxia. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 304(7), R514–22. https://doi.org/10.1152/ajpregu.00542.2012
  • Hinrichs, H., & Machleidt, W. (1992). Basic emotions reflected in EEG-coherences. International Journal of Psychophysiology, 13(3), 225–232. https://doi.org/10.1016/0167-8760(92)90072-j
  • Jacinto, L. R., Reis, J. S., Dias, N. S., Cerqueira, J. J., Correia, J. H., & Sousa, N. (2013). Affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Frontiers in Behavioral Neuroscience, 7, 127. https://www.frontiersin.org/article/10<?sch-permit JATS-0034-007?>.3389/fnbeh.2013.00127
  • Johnson, P. L., Molosh, A., Fitz, S. D., Truitt, W. A., & Shekhar, A. (2012). Orexin, stress, and anxiety/panic states. Progress in Brain Research, 198, 133–161. https://doi.org/10.1016/B978-0-444-59489-1.00009-4
  • Jokić-Begić, N., & Begić, D. (2003). Quantitative electroencephalogram (qEEG) in combat veterans with post-traumatic stress disorder (PTSD). Nordic Journal of Psychiatry, 57(5), 351–355. https://doi.org/10.1080/08039480310002688
  • Kamzanova, A. T., Kustubayeva, A. M., & Matthews, G. (2014). Use of EEG workload indices for diagnostic monitoring of vigilance decrement. Human Factors, 56(6), 1136–1149. https://doi.org/10.1177/0018720814526617
  • Keane, T. M., Marshall, A. D., & Taft, C. T. (2006). Posttraumatic stress disorder: Etiology, epidemiology, and treatment outcome. Annual Review of Clinical Psychology, 2(1), 161–197. https://doi.org/10.1146/annurev.clinpsy.2.022305.095305
  • Keeney, A. J., Hogg, S., & Marsden, C. A. (2001). Alterations in core body temperature, locomotor activity, and corticosterone following acute and repeated social defeat of male NMRI mice. Physiology & Behavior, 74(1–2), 177–184. https://doi.org/10.1016/s0031-9384(01)00541-8
  • Krishnan, V., & Collop, N. A. (2006). Gender differences in sleep disorders. Current Opinion in Pulmonary Medicine, 12(6), 383–389. https://doi.org/10.1097/01.mcp.0000245705.69440.6a
  • Liu, D., & Dan, Y. (2019). A motor theory of sleep-wake control: Arousal-action circuit. Annual Review of Neuroscience, 42(1), 27–46. https://doi.org/10.1146/annurev-neuro-080317-061813
  • Lo Martire, V., Caruso, D., Palagini, L., Zoccoli, G., & Bastianini, S. (2020). Stress & sleep: A relationship lasting a lifetime. Neuroscience and Biobehavioral Reviews, 117, 65–77. https://doi.org/10.1016/j.neubiorev.2019.08.024
  • MacLean, M. H., Arnell, K. M., & Cote, K. A. (2012). Resting EEG in alpha and beta bands predicts individual differences in attentional blink magnitude. Brain and Cognition, 78(3), 218–229. https://doi.org/10.1016/j.bandc.2011.12.010
  • Marazziti, D., Di Muro, A., & Castrogiovanni, P. (1992). Psychological stress and body temperature changes in humans. Physiology & Behavior, 52(2), 393–395. https://doi.org/10.1016/0031-9384(92)90290-i
  • Marin, M. F., Lord, C., Andrews, J., Juster, R.-P., Sindi, S., Arsenault-Lapierre, G., Fiocco, A. J., & Lupien, S. J. (2011). Chronic stress, cognitive functioning and mental health. Neurobiology of Learning and Memory, 96(4), 583–595. https://doi.org/10.1016/j.nlm.2011.02.016
  • McGivern, R. F., Zuloaga, D. G., & Handa, R. J. (2009). Sex differences in stress-induced hyperthermia in rats: Restraint versus confinement. Physiology & Behavior, 98(4), 416–420. https://doi.org/10.1016/j.physbeh.2009.07.004
  • Medina-Saldivar, C., Cruz-Visalaya, S., Zevallos-Arias, A., Pardo, G. V. E., & Pacheco-Otálora, L. F. (2024). Differential effect of chronic mild stress on anxiety and depressive-like behaviors in three strains of male and female laboratory mice. Behavioural Brain Research, 460, 114829. https://doi.org/10.1016/j.bbr.2023.114829
  • Meerlo, P., de Bruin, E. A., Strijkstra, A. M., & Daan, S. (2001). A social conflict increases EEG slow-wave activity during subsequent sleep. Physiology & Behavior, 73(3), 331–335. https://doi.org/10.1016/s0031-9384(01)00451-6
  • Meerlo, P., Sgoifo, A., De Boer, S. F., & Koolhaas, J. M. (1999). Long-lasting consequences of a social conflict in rats: Behavior during the interaction predicts subsequent changes in daily rhythms of heart rate, temperature, and activity. Behavioral Neuroscience, 113(6), 1283–1290. https://doi.org/10.1037//0735-7044.113.6.1283
  • Morrison, S. F., & Nakamura, K. (2019). Central mechanisms for thermoregulation. Annual Review of Physiology, 81(1), 285–308. https://doi.org/10.1146/annurev-physiol-020518-114546
  • Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of depression. Neuron, 34(1), 13–25. https://doi.org/10.1016/s0896-6273(02)00653-0
  • Neuroscore User Manual. (2021). NeuroScore v3.4.0 user manual [Internet]. Data Sciences International. [cited 2022 Jul 30]. https://support.datasci.com/hc/en-us/articles/4402145447059-NeuroScore-v3-4-0-User-Manual
  • Oka, T. (2015). Psychogenic fever: How psychological stress affects body temperature in the clinical population. Temperature, 2(3), 368–378. https://doi.org/10.1080/23328940.2015.1056907
  • Oka, T., & Oka, K. (2007). Age and gender differences of psychogenic fever: A review of the Japanese literature. BioPsychoSocial Medicine, 1(1), 11. https://doi.org/10.1186/1751-0759-1-11
  • Oken, B. S., Salinsky, M. C., & Elsas, S. M. (2006). Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clinical Neurophysiology, 117(9), 1885–1901. https://doi.org/10.1016/j.clinph.2006.01.017
  • Page, G. G., Opp, M. R., & Kozachik, S. L. (2016). Sex differences in sleep, anhedonia, and HPA axis activity in a rat model of chronic social defeat. Neurobiology of Stress, 3, 105–113. https://doi.org/10.1016/j.ynstr.2016.03.002
  • Palacios-García, I., Silva, J., Villena-González, M., Campos-Arteaga, G., Artigas-Vergara, C., Luarte, N., Rodríguez, E., & Bosman, C. A. (2021). Increase in beta power reflects attentional top-down modulation after psychosocial stress induction. Frontiers in Human Neuroscience, 15, 630813. https://doi.org/10.3389/fnhum.2021.630813
  • Paul, K. N., Losee-Olson, S., Pinckney, L., & Turek, F. W. (2009). The ability of stress to alter sleep in mice is sensitive to reproductive hormones. Brain Research, 1305, 74–85. https://doi.org/10.1016/j.brainres.2009.09.055
  • Perlis, M. L., Merica, H., Smith, M. T., & Giles, D. E. (2001). Beta EEG activity and insomnia. Sleep Medicine Reviews, 5(5), 363–374. https://doi.org/10.1053/smrv.2001.0151
  • Rajendran, V. G., Jayalalitha, S., & Adalarasu, K. (2021). EEG based evaluation of examination stress and test anxiety among college students. IRBM [Internet]. [cited 2022 Mar 14]. https://www.sciencedirect.com/science/article/pii/S1959031821000798
  • Rempe, M. J., Clegern, W. C., & Wisor, J. P. (2015). An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters. Nature and Science of Sleep, 7, 85–99. https://doi.org/10.2147/NSS.S84548
  • Rothe, N., Steffen, J., Penz, M., Kirschbaum, C., & Walther, A. (2020). Examination of peripheral basal and reactive cortisol levels in major depressive disorder and the burnout syndrome: A systematic review. Neuroscience and Biobehavioral Reviews, 114, 232–270. https://doi.org/10.1016/j.neubiorev.2020.02.024
  • Sanford, L. D., Suchecki, D., & Meerlo, P. (2015). Stress, arousal, and sleep. Current Topics in Behavioral Neurosciences, 25, 379–410. http://www.ncbi.nlm.nih.gov/pubmed/24852799 https://doi.org/10.1007/7854_2014_314
  • Sheikh, J. I., Leskin, G. A., & Klein, D. F. (2002). Gender differences in panic disorder: Findings from the National Comorbidity Survey. The American Journal of Psychiatry, 159(1), 55–58. https://doi.org/10.1176/appi.ajp.159.1.55
  • Smit, A. S., Eling, P. A. T. M., Hopman, M. T., & Coenen, A. M. L. (2005). Mental and physical effort affect vigilance differently. International Journal of Psychophysiology, 57(3), 211–217. https://doi.org/10.1016/j.ijpsycho.2005.02.001
  • Spiegelhalder, K., Regen, W., Feige, B., Holz, J., Piosczyk, H., Baglioni, C., Riemann, D., & Nissen, C. (2012). Increased EEG sigma and beta power during NREM sleep in primary insomnia. Biological Psychology, 91(3), 329–333. https://doi.org/10.1016/j.biopsycho.2012.08.009
  • Suh, S., Cho, N., & Zhang, J. (2018). Sex differences in insomnia: From epidemiology and etiology to intervention. Current Psychiatry Reports, 20(9), 69. https://doi.org/10.1007/s11920-018-0940-9
  • Swaab, D. F., & Bao, A. M. (2020). Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Handbook of Clinical Neurology, 175, 335–358. https://doi.org/10.1016/B978-0-444-64123-6.00023-0
  • Tement, S., Pahor, A., & Jaušovec, N. (2016). EEG alpha frequency correlates of burnout and depression: The role of gender. Biological Psychology, 114, 1–12. https://doi.org/10.1016/j.biopsycho.2015.11.005
  • Thompson, R. L., Lewis, S. L., Murphy, M. R., Hale, J. M., Blackwell, P. H., Acton, G. J., Clough, D. H., Patrick, G. J., & Bonner, P. N. (2004). Are there sex differences in emotional and biological responses in spousal caregivers of patients with alzheimer’s disease? Biological Research for Nursing, 5(4), 319–330. https://doi.org/10.1177/1099800404263288
  • Tsutsui, R., Shinomiya, K., Sendo, T., Kitamura, Y., & Kamei, C. (2015). Effects of the 5-HT(1A) receptor agonist tandospirone on ACTH-induced sleep disturbance in rats. Biological & Pharmaceutical Bulletin, 38(6), 884–888. https://doi.org/10.1248/bpb.b14-00887
  • Vanini, G., & Baghdoyan, H. A. (2013). Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. Sleep, 36(3), 337–343. https://doi.org/10.5665/sleep.2444
  • Vazquez-Palacios, G., & Velazquez-Moctezuma, J. (2000). Effect of electric foot shocks, immobilization, and corticosterone administration on the sleep-wake pattern in the rat. Physiology & Behavior, 71(1–2), 23–28. https://doi.org/10.1016/s0031-9384(00)00285-7
  • Vázquez-Palacios, G., Retana-Márquez, S., Bonilla-Jaime, H., & Velázquez-Moctezuma, J. (2001). Further definition of the effect of corticosterone on the sleep–wake pattern in the male rat. Pharmacology, Biochemistry, and Behavior, 70(2–3), 305–310. https://doi.org/10.1016/s0091-3057(01)00620-7
  • Vinkers, C. H., Penning, R., Hellhammer, J., Verster, J. C., Klaessens, J. H. G. M., Olivier, B., & Kalkman, C. J. (2013). The effect of stress on core and peripheral body temperature in humans. Stress (Amsterdam, Netherlands), 16(5), 520–530. https://doi.org/10.3109/10253890.2013.807243
  • Vyazovskiy, V. V., & Delogu, A. (2014). NREM and REM sleep: Complementary roles in recovery after wakefulness. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 20(3), 203–219. https://doi.org/10.1177/1073858413518152
  • Wang, C., Ramakrishnan, S., Laxminarayan, S., Dovzhenok, A., Cashmere, J. D., Germain, A., & Reifman, J. (2020). An attempt to identify reproducible high-density EEG markers of PTSD during sleep. Sleep, 43(1), zsz207. https://doi.org/10.1093/sleep/zsz207
  • Wang, R., Kogler, L., & Derntl, B. (2024). Sex differences in cortisol levels in depression: A systematic review and meta-analysis. Frontiers in Neuroendocrinology, 72, 101118. https://doi.org/10.1016/j.yfrne.2023.101118
  • Wang, Z. J., Yu, B., Zhang, X. Q., Sheng, Z. F., Li, S. J., Huang, Y. L., Cao, Q., Cui, X. Y., Cui, S. Y., & Zhang, Y. H. (2014). Correlations between depression behaviors and sleep parameters after repeated corticosterone injections in rats. Acta Pharmacologica Sinica, 35(7), 879–888. https://doi.org/10.1038/aps.2014.44
  • Winsky-Sommerer, R., Boutrel, B., & de Lecea, L. (2005). Stress and arousal: The corticotrophin-releasing factor/hypocretin circuitry. Molecular Neurobiology, 32(3), 285–294. https://doi.org/10.1385/MN:32:3:285
  • Wright, C. J., Milosavljevic, S., & Pocivavsek, A. (2023). The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiology of Stress, 24, 100543. https://doi.org/10.1016/j.ynstr.2023.100543
  • Xi, K., Huang, X., Liu, T., Liu, Y., Mao, H., Wang, M., Feng, D., Wang, W., Guo, B., & Wu, S. (2021). Translational relevance of behavioral, neural, and electroencephalographic profiles in a mouse model of post-traumatic stress disorder. Neurobiology of Stress, 15, 100391. https://doi.org/10.1016/j.ynstr.2021.100391
  • Xu, Y. X., Liu, G. Y., Ji, Z. Z., Li, Y. Y., Wang, Y. L., Wu, X. Y., Liu, J. L., Ma, D. X., Zhong, M. K., Gao, C. B., & Xu, Q. (2023). Restraint stress induced anxiety and sleep in mice. Frontiers in Psychiatry, 14, 1090420. https://doi.org/10.3389/fpsyt.2023.1090420
  • Zhao, W., Van Someren, E. J. W., Li, C., Chen, X., Gui, W., Tian, Y., Liu, Y., & Lei, X. (2021). EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis. Sleep Medicine Reviews, 59, 101457. https://doi.org/10.1016/j.smrv.2021.101457