Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 7, 2004 - Issue 2
715
Views
152
CrossRef citations to date
0
Altmetric
Original Article

Hemispheric Asymmetry in Stress Processing in Rat Prefrontal Cortex and the Role of Mesocortical Dopamine

Pages 131-143 | Received 17 Jul 2003, Accepted 06 Feb 2004, Published online: 07 Jul 2009

References

  • Abercrombie, E.D., Keefe, K.A., DiFrischia, D.S. and Zigmond, M.J. (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex, J. Neurochem. 52(5),1655–1658.
  • Adamec, R.E. (1999) Evidence that limbic neural plasticity in the right hemisphere mediates partial kindling induced lasting increases in anxiety-like behavior: effects of low frequency stimulation (quenching?) on long term potentiation of amygdala efferents and behavior following kindling, Brain Res. 839(1),133–152.
  • Adamec, R.E. (2000) Evidence that long-lasting potentiation in limbic circuits mediating defensive behavior in the right hemisphere underlies pharmacological stressor (FG-7142) induced lasting increases in anxiety-like behavior: role of benzodiazepine receptors, J. Psychopharmacol. 14(4),307–322.
  • Akana, S.F., Chu, A., Soriano, L. and Dallman, M.F. (2001) Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots, J. Neuroendocrinol. 13(7),625–637.
  • Andersen, S.L. and Teicher, M.H. (1999) Serotonin laterality in amygdala predicts performance in the elevated plus maze, Neuroreport 10, 3497–3500.
  • Bacon, S.J. and Smith, A.D. (1993) A monosynaptic pathway from an identified vasomotor centre in the medial prefrontal cortex to an autonomic area in the thoracic spinal cord, Neuroscience 54, 719–728.
  • Barneoud, P., Neveu, P.J., Vitiello, S., Mormede, P. and Le Moal, M. (1988) Brain neocortex immunomodulation in rats, Brain Res. 474(2),394–398.
  • Beck, C.H. and Fibiger, H.C. (1995) Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment, J. Neurosci. 15(1),709–720.
  • Berridge, C.W., Mitton, E., Clark,W. and Roth, R.H. (1999) Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress, Synapse 32, 187–197.
  • Berridge, C.W., Espana, R.A. and Stalnaker, T.A. (2003) Stress and coping: asymmetry of dopamine efferents within the prefrontal cortex, In: Hugdahl, K. and Davidson, R.J., eds, The Asymmetrical Brain (The MIT Press, Cambridge, MA), pp 69–103.
  • Brake, W.G., Flores, G., Francis, D., Meaney, M.J., Srivastava, L.K. and Gratton, A. (2000a) Enhanced nucleus accumbens dopamine and plasma corticosterone stress responses in adult rats with neonatal excitotoxic lesions to the medial prefrontal cortex, Neuroscience 96(4),687–695.
  • Brake, W.G., Sullivan, R.M. and Gratton, A. (2000b) Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats, J. Neurosci. 20(14),5538–5543.
  • Broersen, L.M., Heinsbroek, R.P., de Bruin, J.P., Laan, J.B., Joosten, R.N. and Olivier, B. (1995) Local pharmacological manipulations of prefrontal dopamine affect conflict behavior in rats, Behav. Pharmacol. 6(4),395–404.
  • Broersen, L.M., Abbate, F., Feenstra, M.G., de Bruin, J.P., Heinsbroek, R.P. and Olivier, B. (2000) Prefrontal dopamine is directly involved in the anxiogenic interoceptive cue of pentylenetetrazol but not in the interoceptive cue of chlordiazepoxide in the rat, Psychopharmacology (Berl.) 149(4),366–376.
  • Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P.M. and Meaney, M.J. (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat, Proc. Natl Acad. Sci. USA 95(9),5335–5340.
  • Carlson, J.N., Glick, S.D., Hinds, P.A. and Baird, J.L. (1988) Food deprivation alters dopamine utilization in the rat prefrontal cortex and asymmetrically alters amphetamine-induced rotational behavior, Brain Res. 454, 373–377.
  • Carlson, J.N., Fitzgerald, L.W., Keller, R.W. and Glick, S.D. (1991) Side and region dependent changes in dopamine activation with various durations of restraint stress, Brain Res. 550, 313–318.
  • Carlson, J.N., Fitzgerald, L.W., Keller, R.W. and Glick, S.D. (1993) Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat, Brain Res. 630, 178–187.
  • Carr, D.B. and Sesack, S.R. (2000) Dopamine terminals synapse on callosal projection neurons in the rat prefrontal cortex, J. Comp. Neurol. 425(2),275–283.
  • Cechetto, D.F. and Saper, C.B. (1990) Role of the cerebral cortex in autonomic function, In: Loewy, A.D. and Spyer, K.M., eds, Central Regulation of Autonomic Functions (Oxford University Press, Oxford), pp 208–223.
  • Cintra, A., Zoli, M., Rosen, L., Agnati, L.F., Okret, S., Wikstrom, A.-C., Gustafsson, J.-A. and Fuxe, K. (1994) Mapping and computer densitometry of glucocorticoid receptor immunoreactive neurons and glial cells in the rat central nervous system, Neuroscience 62(3),843–897.
  • Coleman-Mesches, K. and McGaugh, J.L. (1995a) Differential effects of pretraining inactivation of the right or left amygdala on retention of inhibitory avoidance training, Behav. Neurosci. 109, 642–647.
  • Coleman-Mesches, K. and McGaugh, J.L. (1995b) Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training, Brain Res. 670(1),75–81.
  • Coleman-Mesches, K. and McGaugh, J.L. (1995c) Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training, Brain Res. 676(1),183–188.
  • Crane, J.W., Ebner, K. and Day, T.A. (2003) Medial prefrontal cortex suppression of the hypothalamic-pituitary-adrenal axis response to a physical stressor, systemic delivery of interleukin-1beta, Eur. J. Neurosci. 17, 1473–1481.
  • Crucian, G.P., Hughes, J.D., Barrett, A.M., Williamson, D.J., Bauer, R.M., Bowers, D. and Heilman, K.M. (2000) Emotional and physiological responses to false feedback, Cortex 36(5),623–647.
  • Damasio, A.R. (1994) Descartes’ Error (Grosset/Putnam, New York).
  • Damasio, A.R., Tranel, D. and Damasio, H. (1990) Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli, Behav. Brain Res. 41, 81–94.
  • Davidson, R.J. (1998) Cerebral asymmetry, emotion and affective style, In: Davidson, R.J. and Hughdahl, K., eds, Brain Asymmetry (MIT Press, Cambridge), pp 361–387.
  • Davidson, R.J., Coe, C.C., Dolski, I. and Donzella, B. (1999) Individual differences in prefrontal activation asymmetry predict natural killer cell activity at rest and in response to challenge, Brain Behav. Immun. 13, 93–108.
  • Davis, M., Hitchcock, J.M., Bowers, M.B., Berridge, C.W., Melia, K.R. and Roth, R.H. (1994) Stress-induced activation of prefrontal cortex dopamine turnover: blockade by lesions of the amygdala, Brain Res. 664(1–2), 207–210.
  • Dazzi, L., Serra, M., Spiga, F., Pisu, M.G., Jentsch, J.D. and Biggio, G. (2001a) Prevention of the stress-induced increase in frontal cortical dopamine efflux of freely moving rats by long-term treatment with antidepressant drugs, Eur. J. Neuropsychopharmacol. 11(5),343–349.
  • Dazzi, L., Spiga, F., Pira, L., Ladu, S., Vacca, G., Rivano, A., Jentsch, J.D. and Biggio, G. (2001b) Inhibition of stress- or anxiogenic-druginduced increases in dopamine release in the rat prefrontal cortex by long-term treatment with antidepressant drugs, J. Neurochem. 76(4),1212–1220.
  • Denenberg, V.H. (1981) Hemispheric laterality in animals and the effects of early experience, Behav. Brain Sci. 4, 1–49.
  • Denenberg, V.H., Gall, J.S., Berrebi, A. and Yutzey, D.A. (1986) Callosal mediation of cortical inhibition in the lateralized rat brain, Brain Res. 397, 327–332.
  • Deutch, A.Y. and Roth, R.H. (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system, In: Uylings, H.B.M., Van Eden, C.G., De Bruin, J.P.C., Corner, M.A. and Feenstra, M.G.P., eds, Progress in brain research (Elsevier, Amsterdam) Vol. 85, The prefrontal cortex: Its structure, function and pathology, pp 367–403.
  • Diamond, M.C. (1991) Hormonal effects on the development or cerebral lateralization, Psychoneuroendocrinology 16(1–3), 121–129.
  • Diorio, D., Viau, V. and Meaney, M.J. (1993) The role of the medial prefrontal cortex (cingulate cortex) in the regulation of hypothalamicpituitary- adrenal responses to stress, J. Neurosci. 13, 3839–3847.
  • Doherty, M.D. and Gratton, A. (1996) Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats, Brain Res. 715(1–2), 86–97.
  • Drew, K.L., Lyon, R.A., Titeler,M. and Glick, S.D. (1986) Asymmetry in D-2 binding in female rat striata, Brain Res. 363(1),192–195.
  • Espejo, E.F. (1999) Selective dopamine depletion within the medial prefrontal cortex induces anxiogenic-like effects in rats placed on the elevated plus maze, Brain Res. 762, 281–284.
  • Feenstra, M.G. (2000) Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward, Prog. Brain Res. 126, 133–163.
  • Feenstra, M.G., Botterblom, M.H. and van Uum, J.F. (1995) Noveltyinduced increase in dopamine release in the rat prefrontal cortex in vivo: inhibition by diazepam, Neurosci. Lett. 189(2),81–84.
  • Feenstra, M.G., Vogel, M., Botterblom, M.H., Joosten, R.N. and de Bruin, J.P. (2001) Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue, Eur. J. Neurosci. 13(5),1051–1054.
  • Feldman, S. and Conforti, N. (1985) Modifications of adrenocortical responses following frontal cortex stimulation in rats with hypothalamic deafferentations and medial forebrain bundle lesions, Neuroscience 15, 1045–1047.
  • Fernandez Espejo, E. (2003) Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory, Neuropsychopharmacology 28(3),490–498.
  • Finlay, J.M., Zigmond, M.J. and Abercrombie, E.D. (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam, Neuroscience 64(3),619–628.
  • Frankel, R.J. and Jenkins, J.S. (1975) Pituitary hormone response to brain stimulation in man, J. Endocrinol. 67(1),113–117.
  • Frysztak, R.J. and Neafsey, E.J. (1991) The effect of medial frontal cortex lesions on respiration, freezing, and ultrasonic vocalizations during conditioned emotional responses in rats, Cereb. Cortex 1, 418–425.
  • Frysztak, R.J. and Neafsey, E.J. (1994) The effect of medial frontal cortex lesions on cardiovascular conditioned emotionalresponses in the rat, Brain Res. 643, 181–193.
  • Gewirtz, J.C., Falls, W.A. and Davis, M. (1997) Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medical prefrontal cortex in rats, Behav. Neurosci. 111(4),712–726.
  • Glick, S.D., Raucci, J., Wang, S., Keller, R.W. Jr. and Carlson, J.N. (1994) Neurochemical predisposition to self-administer cocaine in rats: individual differences in dopamine and its metabolites, Brain Res. 653(1–2), 148–154.
  • Gonzalez, L.E., Rujano, M., Tucci, S., Paredes, D., Silva, E., Alba, G. and Hernandez, L. (2000) Medial prefrontal transection enhances social interaction. I: behavioral studies, Brain Res. 887, 7–15.
  • Granon, S., Passetti, F., Thomas, K.L., Dalley, J.W., Everitt, B.J. and Robbins, T.W. (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex, J. Neurosci. 20(3),1208–1215.
  • Handa, R.J., Nunley, K.M. and Bollnow, M.R. (1993) Induction of c-fos mRNA in the brain and anterior pituitary gland by a novel environment, Neuroreport 4(9),1079–1082.
  • Harper, R.M., Bandler, R., Spriggs, D. and Alger, J.R. (2000) Lateralized and widespread brain activation during transient blood pressure elevation revealed by magnetic resonance imaging, J. Comp. Neurol. 417(2),195–204.
  • Hayley, S., Borowski, T., Merali, Z. and Anisman, H. (2001) Central monoamine activity in genetically distinct strains of mice following a psychogenic stressor: effects of predator exposure, Brain Res. 892(2),293–300.
  • Henke, P.G., Ray, A. and Sullivan, R.M. (1991) The amygdala. Emotions and gut functions, Dig. Dis. Sci. 36(11),1633–1643.
  • Henry, J.P. (1997) Psychological and physiological responses to stress: the right hemisphere and the hypothalamic-pituitary-adrenal axis, an inquiry into problems of human bonding, Acta Physiol. Scand. (Suppl. 640), 10–25.
  • Herry, C. and Garcia, R. (2002) Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice, J. Neurosci. 22(2),577–583.
  • Herry, C., Vouimba, R.M. and Garcia, R. (1999) Plasticity in the mediodorsal thalamo-prefrontal cortical transmission in behaving mice, J. Neurophysiol. 82(5),2827–2832.
  • Hilz, M.J., Dutsch, M., Perrine, K., Nelson, P.K., Rauhut, U. and Devinsky, O. (2001) Hemispheric influence on autonomic modulation and baroreflex sensitivity, Ann. Neurol. 49(5),575–584.
  • Holson, R.R. (1986) Mesial prefrontal cortical lesions and timidity in rats. I. Reactivity to aversive stimuli, Physiol. Behav. 37, 221–230.
  • Hurley, K.M., Herbert, H., Moga, M.M. and Saper, C.B. (1991) Efferent projections of the infralimbic cortex of the rat, J. Comp. Neurol. 308, 249–276.
  • Jedema, H.P., Sved, A.F., Zigmond, M.J. and Finlay, J.M. (1999) Sensitization of norepinephrine release in medial prefrontal cortex: effect of different chronic stress protocols, Brain Res. 830(2),211–217.
  • Jodo, E., Chiang, C. and Aston-Jones, G. (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons, Neuroscience 83(1),63–79.
  • Kalin, N.H., Larson, C., Shelton, S.E. and Davidson, R.J. (1998) Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys, Behav. Neurosci. 112, 286–292.
  • Kalin, N.H., Shelton, S.E. and Davidson, R.J. (2000) Cerebrospinal fluid corticotropin-releasing hormone levels are elevated in monkeys with patterns of brain activity associated with fearful temperament, Biol. Psychiatry 47, 579–585.
  • King, A.B., Menon, R.S., Hachinski, V. and Cechetto, D.F. (1999) Human forebrain activation by visceral stimuli, J. Comp. Neurol. 413(4),572–582.
  • Lacroix, L., Broersen, L.M., Weiner, I. and Feldon, J. (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat, Neuroscience 84, 431–442.
  • Lacroix, L., Spinelli, S., Heidbreder, C.A. and Feldon, J. (2000) Differential role of the medial and lateral prefrontal cortices in fear and anxiety, Behav. Neurosci. 114(6),1119–1130.
  • Lane, R.D., Kivley, L.S., Du Bois, M.A., Shamasundara, P. and Schwartz, G.E. (1995) Levels of emotional awareness and the degree of right hemispheric dominance in the perception of facial emotion, Neuropsychologia 33(5),525–538.
  • Levine, S. (1975) Infantile experience and resistance to physiological stress, Science 126, 405–406.
  • Levine, S.C. and Levy, J. (1986) Perceptual asymmetry for chimeric faces across the life span, Brain Cogn. 5(3),291–306.
  • Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. and Meaney, M.J. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic– pituitary–adrenal responses to stress, Science 277, 1659–1662.
  • Maaswinkel, H., Gispen, W.H. and Suruijt, B.M. (1996) Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat, Behav. Brain Res. 79, 51–59.
  • McEwen, B.S., De Kloet, E.R. and Rostene,W.H. (1986) Adrenal steroid receptors and actions in the nervous system, Physiol. Rev. 66, 1121–1150.
  • Meadows, M.-E. and Kaplan, R.F. (1994) Dissociation of autonomic and subjective responses to emotional slides in right hemisphere damaged patients, Neuropsychologia 32, 847–856.
  • Meaney, M.J. and Aitken, D.H. (1985) [3H]Dexamethasone binding in rat frontal cortex, Brain Res. 328, 176–180.
  • Meaney, M.J., Aitken, D.H., Bodnoff, S.R., Iny, L.J., Tatarewicz, J.E. and Sapolsky, R.M. (1985) Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions, Behav. Neurosci. 99(4),765–770.
  • Meaney, M.J., Diorio, J., Francis, D.,Widdowson, J., LaPlante, P., Caldji, C., Sharma, S., Seckl, J.R., Plotsky, P.M. and Plotsky, P.M. (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress, Dev. Neurosci. 18(1–2), 49–72.
  • Milad, M.R. and Quirk, G.J. (2002) Neurons in medial prefrontal cortex signal memory for fear extinction, Nature 420(6911),70–74.
  • Moghaddam, B. (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia, J. Neurochem. 60(5),1650–1657.
  • Morgan, M.E. and LeDoux, J.E. (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats, Behav. Neurosci. 109, 681–688.
  • Morgan, M.A., Romanski, L.M. and LeDoux, J.E. (1993) Extinction of emotional learning: contribution of medial prefrontal cortex, Neurosci. Lett. 163, 109–113.
  • Morgan, M.A., Schulkin, J. and LeDoux, J.E. (2003) Ventral medial prefrontal cortex and emotional perseveration: the memory for prior extinction training, Behav. Brain Res. 146(1–2), 121–130.
  • Morrow, B.A., Elsworth, J.D., Rasmusson, A.M. and Roth, R.H. (1999) The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat, Neuroscience 92(2),553–564.
  • Morrow, B.A., Elsworth, J.D., Lee, E.J. and Roth, R.H. (2000) Divergent effects of putative anxiolyticson stress-induced fos expression in the mesoprefrontal system of the rat, Synapse 36(2),143–154.
  • Neveu, P.J. (1993) Brain lateralization and immunomodulation, Int. J. Neurosci. 70(1–2), 135–143.
  • Nielsen, D.M., Crosley, K.J., Keller, R.W. Jr., Glick, S.D. and Carlson, J.N. (1999) Left and right 6-hydroxydopamine lesions of the medial prefrontal cortex differentially affect voluntary ethanol consumption, Brain Res. 823(1–2), 59–66.
  • Ohta, M. (1984) Amygdaloid and cortical facilitation or inhibition of trigeminal motoneurons in the rat, Brain Res. 291(1),39–48.
  • Pezze, M.A., Bast, T. and Feldon, J. (2003) Significance of dopamine transmission in the rat medial prefrontal cortex for conditioned fear, Cereb. Cortex 13(4),371–380.
  • Plotsky, P.M. and Meaney, M.J. (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats, Brain Res. Mol. Brain Res. 18(3),195–200.
  • Porges, S.W. (1995) Cardiac vagal tone: a physiological index of stress, Neurosci. Biobehav. Rev. 19, 225–233.
  • Powell, D.A., Watson, K. and Maxwell, B. (1994) Involvement of subdivisions of the medial prefrontal cortex in learned cardiac adjustments in rabbits, Behav. Neurosci. 108, 294–307.
  • Price, J.L. (1999) Prefrontal cortical networks related to visceral function and mood, Ann. NY Acad. Sci. 877, 383–396.
  • Robbins, T.W. (2000) From arousal to cognition: the integrative position of the prefrontal cortex, Prog. Brain Res. 126, 469–483.
  • Robinson, R.G., Kubos, K.L., Starr, L.B., Rao, K. and Price, T.R. (1984) Mood disorders in stroke patients: importance of location of lesion, Brain 107, 81–93.
  • Ross, E.D. and Mesulam, M.M. (1979) Dominant language functions of the right hemisphere? Prosody and emotional gesturing, Arch. Neurol. 36(3),144–148.
  • Rots, N.Y., Workel, J., Oitzl, M.S., Berod, A., Rostene, W., Cools, A.R. and De Kloet, E.R. (1996) Development of divergence in dopamine responsiveness in genetically selected rat lines is preceded by changes in pituitary-adrenal activity, Brain Res. Dev. Brain Res. 92(2),164–171.
  • Sackeim, H.A., Gur, R.C. and Saucy, M.C. (1978) Emotions are expressed more intensely on the left side of the face, Science 202(4366),434–436.
  • Sapolsky, R.M., Krey, L.C. and McEwen, B.S. (1984) Glucocorticoidsensitive hippocampal neurons are involved in terminating the adrenocortical stress response, Proc. Natl Acad. Sci. USA 81, 6174–6177.
  • Sesack, S.R., Deutch, A.Y., Roth, R.H. and Bunney, B.S. (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with phaseolus vulgaris leucoagglutinin, J. Comp. Neurol. 290, 213–242.
  • Shah, A.A. and Treit, D. (2003) Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests, Brain Res. 969(1–2), 183–194.
  • Shah, A.A. and Treit, D. (2004) Infusions of midazolam into the medial prefrontal cortex produce anxiolytic effects in the elevated plus-maze and shock-probe burying tests, Brain Res. 996(1),31–40.
  • Sharma, V., Menon, R., Carr, T.J., Densmore, M., Mazmanian, D. and Williamson, P.C. (2003) An MRI study of subgenual prefrontal cortex in patients with familial and non-familial bipolar disorder, J. Affect. Disord. 77, 167–171.
  • Simpson, J.R., Jr., Drevets, W.C., Snyder, A.Z., Gusnard, D.A. and Raichle, M.E. (2001) Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety, Proc. Natl Acad. Sci. USA 98(2),688–693.
  • Smotherman, W.P. (1983) Mother-infant interaction and the modulation of pituitary–adrenal activity in rat pups after early stimulation, Dev. Psychobiol. 16, 169–176.
  • Sorg, B.A. and Kalivas, P.W. (1993) Effects of cocaine and footshock stress on extracellular dopamine levels in the medial prefrontal cortex, Neuroscience 53(3),695–703.
  • Springer, S.P. and Deutch, G. (1998) In: Atkinson, R.C., Lindzey, G. and Thompson, R.F., eds, Left brain, right brain: perspectives from cognitive neuroscience, 5th ed. (W.H. Freeman and Company Worth Publishers, New York, NY).
  • Stevenson, C.W., Sullivan, R.M. and Gratton, A. (2003) Effects of basolateral amygdala dopamine depletion on the nucleus accumbens and medial prefrontal cortical dopamine responses to stress, Neuroscience 16(1),285–293.
  • Sullivan, R.M. and Brake,W.G. (2003) What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: the critical role of early developmental events on prefrontal function, Behav. Brain Res. 146(1–2), 43–55.
  • Sullivan, R.M. and Dufresne, M. (2002) Effects of unilateral dopamine receptor blockade in medial prefrontal cortex on stress-induced HPA activitiy in handled and nonhandled rats, Soc. Neurosci. Abstr. 28, (online).
  • Sullivan, R.M. and Gratton, A. (1998) Relationships between stressinduced increases in medial prefrontal cortical dopamine and plasma corticosterone levels in rats: role of cerebral laterality, Neuroscience 83, 81–91.
  • Sullivan, R.M. and Gratton, A. (1999) Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats, J. Neurosci. 19, 2834–2840.
  • Sullivan, R.M. and Gratton, A. (2002a) Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters, Psychoneuroendocrinology 27, 99–114.
  • Sullivan, R.M. and Gratton, A. (2002b) Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemispheredependent, Brain Res. 927, 69–79.
  • Sullivan, R.M. and Gratton, A. (2003) Behavioral and neuroendocrine relevance of hemispheric asymmetries in benzodiazepine receptor binding induced by postnatal handling in the rat, Brain Cogn. 51, 218–220.
  • Sullivan, R.M. and Henke, P.G. (1986) The anterior midline cortex and adaptation to stress ulcers in rats, Brain Res. Bull. 17, 493–496.
  • Sullivan, R.M. and Szechtman, H. (1995) Asymmetrical influence of mesocortical dopamine depletion on stress ulcer development and subcortical dopamine systems in rats: implications for psychopathology, Neuroscience 65, 757–766.
  • Takagishi, M. and Chiba, T. (1991) Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study, Brain Res. 566(1–2), 26–39.
  • Terreberry, R.R. and Neafsey, E.F. (1987) The rat medial frontal cortex projects directly to autonomic regions of the brainstem, Brain Res. Bull. 19, 639–649.
  • Thiel, C.M. and Schwarting, R.K. (2001) Dopaminergic lateralisation in the forebrain: relations to behavioral asymmetries and anxiety in male Wistar rats, Neuropsychobiology 43, 192–199.
  • Thierry, A.M., Tassin, J.P., Blanc, G. and Glowinski, J. (1976) Selective activation of mesocortical DA systems by stress, Nature 263, 242–243.
  • Tranel, D., Bechara, A. and Denburg, N.L. (2002) Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing, Cortex 38(4),589–612.
  • Van Eden, C.G. and Buijs, R.M. (2000) Functional neuroanatomy of the prefrontal cortex: autonomic interactions, Prog. Brain Res. 126, 49–62.
  • Van Eden, C.G., Hoorneman, E.M., Buijs, R.M., Matthijssen, M.A., Geffard, M. and Uylings, H.B. (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level, Neuroscience 22(3),849–862.
  • Verstynen, T., Tierney, R., Urbanski, T. and Tang, A. (2001) Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat, Neuroreport 12(14),3019–3022.
  • Vlajkovic, S., Nikolic, V., Nikolic, A., Milanovic, S. and Jankovic, B.D. (1994) Asymmetrical modulation of immune reactivity in leftand right-biased rats after ipsilateral ablation of the prefrontal, parietal and occipital brain neocortex, Int. J. Neurosci. 78(1–2), 123–134.
  • Wager, T.D., Phan, K.L., Liberzon, I. and Taylor, S.F. (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging, Neuroimage 19(3),513–531.
  • Williams, G.V. and Goldman-Rakic, P.S. (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex, Nature 376(6541),572–575.
  • Wittling,W. (1997) The right hemisphere and the human stress response, Acta Physiol. Scand. (Suppl. 640), 55–59.
  • Wittling, W. and Pfluger, M. (1990) Neuroendocrine hemisphere asymmetries: salivary cortisol secretion during lateralized viewing of emotion-related and neutral films, Brain Cogn. 14(2),243–265.
  • Wittling, W. and Roschmann, R. (1993) Emotion-related hemisphere asymmetry: subjective emotional responses to laterally presented films, Cortex 29, 431–448.
  • Wittling, W. and Schweiger, E. (1993) Alterations of neuroendocrine brain asymmetry: a neural risk factor affecting physical health, Neurophychobiology 28, 25–29.
  • Wittling,W., Block, A., Schweiger, E. and Genzel, S. (1998) Hemisphere asymmetry in sympathetic control of the human myocardium, Brain Cogn. 38(1),17–35.
  • Yoon, B.W., Morillo, C.A., Cechetto, D.F. and Hachinski, V. (1997) Cerebral lateralization in cardiac autonomic control, Arch. Neurol. 54(6),741–744.
  • Yoshioka, M., Matsumoto, M., Togashi, H. and Saito, H. (1995) Effects of conditioned fear stress on 5-HT release in the rat prefrontal cortex, Pharmacol. Biochem. Behav. 51(2),515–519.
  • Zald, D.H., Mattson, D.L. and Pardo, J.V. (2002) Brain activity in ventromedial prefrontal cortex correlates with individual differences in negative affect, Proc. Natl Acad. Sci. USA 99, 2450–2454.
  • Zimmerberg, B. and Reuter, J.M. (1989) Sexually dimorphic behavioral and brain asymmetries in neonatal rats: effects of prenatal alcohol exposure, Brain Res. Dev. Brain Res. 46(2),281–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.