Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 7, 2004 - Issue 2
213
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Cellular Mechanisms Underlying Neuronal Excitability during Morphine Withdrawal in Physical Dependence: Lessons from the Magnocellular Oxytocin System

&
Pages 97-107 | Received 21 Jan 2004, Accepted 25 May 2004, Published online: 07 Jul 2009

References

  • Abbadie, C., Pan, Y.X. and Pasternak, G.W. (2000) Differential distribution in rat brain of m-opioid receptor carboxy terminal splice variants MOR-1C-like and MOR-1-like immunoreactivity: evidence for region-specific processing, J. Comp. Neurol. 419, 244–256.
  • Akaoka, H. and Aston-Jones, G. (1991) Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input, J. Neurosci. 11, 3830–3839.
  • Andrew, R.D. and Dudek, F.E. (1983) Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism, Science 221, 1050–1052.
  • Antonio, M.J., Vargas, M.L., Fuente, T., Del Rio, G.J. and Milane´s, M.V. (1990) Plasma b-endorphin and cortisol levels in morphine-tolerant rats and in naloxone-induced withdrawal, Eur. J. Pharmacol. 182, 117–123.
  • Armstrong, W.E., Smith, B.N. and Tian, M. (1994) Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro, J. Physiol. 475, 115–128.
  • Belin, V. and Moos, F. (1986) Paired recordings from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization, J. Physiol. 377, 369–390.
  • Bicknell, R.J., Leng, G., Lincoln, D.W. and Russell, J.A. (1988) Naloxone excites oxytocin neurones in the supraoptic nucleus of lactating rats after chronic morphine treatment, J. Physiol. 396, 297–317.
  • Blackburn-Munro, G., Brown, C.H., Neumann, I.D., Landgraf, R. and Russell, J.A. (2000) Verapamil prevents withdrawal excitation of oxytocin neurones in morphine-dependent rats, Neuropharmacology 39, 1596–1607.
  • Bonci, A. and Williams, J.T. (1997) Increased probability of GABA release during withdrawal from morphine, J. Neurosci. 17, 796–803.
  • Bourque, C.W. (1986) Calcium-dependent spike after-current induces burst firing in magnocellular neurosecretory cells, Neurosci. Lett. 70, 204–209.
  • Breton, C. and Zingg, H.H. (1997) Expression and region-specific regulation of the oxytocin receptor gene in rat brain, Endocrinology 138, 1857–1862.
  • Brown, C.H. and Bourque, C.W. (2004) Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular neurosecretory cells, J. Physiol. 557, 949–960.
  • Brown, C.H. and Leng, G. (2000) In vivo modulation of post-spike excitability in vasopressin cells by k-opioid receptor activation, J. Neuroendocrinol. 12, 711–714.
  • Brown, C.H., Munro, G., Murphy, N.P., Leng, G. and Russell, J.A. (1996) Activation of oxytocin neurones by systemic cholecystokinin is unchanged by morphine dependence or withdrawal excitation in the rat, J. Physiol. 496, 787–794.
  • Brown, C.H., Munro, G., Johnstone, L.E., Robson, A.C., Landgraf, R. and Russell, J.A. (1997) Oxytocin neurone autoexcitation during morphine withdrawal in anaesthetized rats, Neuroreport 8, 951–955.
  • Brown, C.H., Murphy, N.P., Munro, G., Ludwig, M., Bull, P.M., Leng, G. and Russell, J.A. (1998) Interruption of central noradrenergic pathways and morphine withdrawal excitation of oxytocin neurones in the rat, J. Physiol. 507, 831–842.
  • Brown, C.H., Johnstone, L.E., Murphy, N.P., Leng, G. and Russell, J.A. (2000a) Local injection of pertussis toxin attenuates morphine withdrawal excitation of rat supraoptic nucleus neurones, Brain Res. Bull. 52, 115–121.
  • Brown, C.H., Russell, J.A. and Leng, G. (2000b) Opioid modulation of magnocellular neurosecretory cell activity, Neurosci. Res. 36, 97–120.
  • Brussaard, A.B., Kits, K.S. and de Vlieger, T.A. (1996) Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat, J. Physiol. 497, 495–507.
  • Bull, P.M., Ludwig, M., Blackburn-Munro, G.J., Delgado-Cohen, H., Brown, C.H. and Russell, J.A. (2003) The role of nitric oxide in morphine dependence and withdrawal excitation of rat oxytocin neurons, Eur. J. Neurosci. 18, 2545–2551.
  • Buller, K.M., Dayas, C.V. and Day, T.A. (2003) Descending pathways from the paraventricular nucleus contribute to the recruitment of brainstem nuclei following a systemic immune challenge, Neuroscience 118, 189–203.
  • Childers, S.R. (1991) Opioid receptor-coupled second messenger systems, Life Sci. 48, 1991–2003.
  • Coombes, J.E., Robinson, I.C., Antoni, F.A. and Russell, J.A. (1991) Release of oxytocin into blood and into cerebrospinal fluid induced by naloxone in anaesthetized morphine-dependent rats: The role of the paraventricular nucleus, J. Neuroendocrinol. 3, 551–561.
  • Cui, S.S., Bowen, R.C., Gu,G.B., Hannesson, D.K., Yu, P.H. and Zhang, X. (2001) Prevention of cannabinoid withdrawal syndrome by lithium: involvement of oxytocinergic neuronal activation, J. Neurosci. 21, 9867–9876.
  • Decavel, C. and Van den Pol, A.N. (1990) GABA: a dominant neurotransmitter in the hypothalamus, J. Comp. Neurol. 302, 1019–1037.
  • Di, S., Malcher-Lopes, R., Halmos, K.C. and Tasker, J.G. (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism, J. Neurosci. 23, 4850–4857.
  • Ebner, K., Wotjak, C.T., Landgraf, R. and Engelmann, M. (2000) A single social defeat experience selectively stimulates the release of oxytocin, but not vasopressin, within the septal brain area of male rats, Brain Res. 872, 87–92.
  • Engelmann, M. and Ludwig, M. (2004) The activity of the hypothalamoneurohypophysial system in response to acute stressor exposure: neuroendocrine and electrophysiological observations, Stress 7 (this issue).
  • Faggiano, F., Vigna-Taglianti, F., Versino, E. and Lemma, P. (2003) Methadone maintenance at different dosages for opioid dependence, Cochrane. Database Syst. Rev., CD002208.
  • Fuertes, G., Laorden, M.L. and Milane´s, M.V. (2000a) Noradrenergic and dopaminergic activity in the hypothalamic paraventricular nucleus after naloxone-induced morphine withdrawal, Neuroendocrinology 71, 60–67.
  • Fuertes, G., Milane´s, M.V., Rodriguez-Gago, M., Mar?´n, M.T. and Laorden, M.L. (2000b) Changes in hypothalamic paraventricular nucleus catecholaminergic activity after acute and chronic morphine administration, Eur. J. Pharmacol. 388, 49–56.
  • Gonzalvez, M.L., Milane´s, M.V., Martinez-Pin˜ero, M.G., Mar?´n, M.T. and Vargas, M.L. (1994) Effects of intracerebroventricular clonidine on the hypothalamic noradrenaline and plasma corticosterone levels of opiate naive rats and after naloxone-induced withdrawal, Brain Res. 647, 199–203.
  • Greffrath,W., Martin, E., Reuss, S. and Boehmer, G. (1998) Components of after-hyperpolarization in magnocellular neurones of the rat supraoptic nucleus in vitro, J. Physiol. 513, 493–506.
  • Grudt, T.J. and Williams, J.T. (1995) Opioid receptors and the regulation of ion conductances, Rev. Neurosci. 6, 279–286.
  • Hack, S.P., Vaughan, C.W. and Christie, M.J. (2003) Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro, Neuropharmacology 45, 575–584.
  • Hatakeyama, S., Kawai, Y., Ueyama, T. and Senba, E. (1996) Nitric oxide synthase-containing magnocellular neurons of the rat hypothalamus synthesize oxytocin and vasopressin and express Fos following stress stimuli, J. Chem. Neuroanat. 11, 243–256.
  • Ibragimov, R., Kovacs, G.L., Szabo, G. and Telegdy, G. (1987) Microinjection of oxytocin into limbic-mesolimbic brain structures disrupts heroin self-administration behavior: a receptor-mediated event?, Life Sci. 41, 1265–1271.
  • Inenaga, K., Nagatomo, T., Nakao, K., Yanaihara, N. and Yamashita, H. (1994) Kappa-selective agonists decrease postsynaptic potentials and calcium components of action potentials in the supraoptic nucleus of rat hypothalamus in vitro, Neuroscience 58, 331–340.
  • Jhamandas, J.H., Harris, K.H., Petrov, T. and Jhamandas, K.H. (1996) Activation of nitric oxide-synthesizing neurones during precipitated morphine withdrawal, Neuroreport 7, 2843–2846.
  • Johnstone, L.E., Brown, C.H., Meeren, H.K., Vuijst, C.L., Brooks, P.J., Leng, G. and Russell, J.A. (2000) Local morphine withdrawal increases c-fos gene, Fos protein, and oxytocin gene expression in hypothalamic magnocellular neurosecretory cells, J. Neurosci. 20, 1272–1280.
  • Kadowaki, K., Kishimoto, J., Leng, G. and Emson, P.C. (1994) Up-regulation of nitric oxide synthase (NOS) gene expression together with NOS activity in the rat hypothalamo-hypophysial system after chronic salt loading: evidence of a neuromodulatory role of nitric oxide in arginine vasopressin and oxytocin secretion, Endocrinology 134, 1011–1017.
  • Kirkpatrick, K. and Bourque, C.W. (1996) Activity dependence and functional role of the apamin-sensitive Kþ current in rat supraoptic neurones in vitro, J. Physiol. 494, 389–398.
  • Kombian, S.B., Mouginot, D. and Pittman, Q.J. (1997) Dendritically released peptides act as retrograde modulators of afferent excitation in the supraoptic nucleus in vitro, Neuron 19, 903–912.
  • Kovacs, G.L., Laczi, F., Vecsernyes, M., Hodi, K., Telegdy, G. and Laszlo, F.A. (1987) Limbic oxytocin and arginine 8-vasopressin in morphine tolerance and dependence, Exp. Brain Res. 65, 307–311.
  • Lang, R.E., Heil, J.W., Ganten, D., Hermann, K., Unger, T. and Rascher, W. (1983) Oxytocin unlike vasopressin is a stress hormone in the rat, Neuroendocrinology 37, 314–316.
  • Laorden, M.L., Fuertes, G., Gonza´lez-Cuello, A. and Milane´s, M.V. (2000) Changes in catecholaminergic pathways innervating paraventricular nucleus and pituitary-adrenal axis response during morphine dependence: implication of a1- and a2-adrenoceptors, J. Pharmacol. Exp. Ther. 293, 578–584.
  • Leng, G. (2000) Oxytocin, In: Fink, G., ed., Encyclopedia of Stress (Academic Press, San Diego), pp 109–114.
  • Leng, G., Blackburn, R.E., Dyball, R.E. and Russell, J.A. (1989) Role of anterior peri-third ventricular structures in the regulation of supraoptic neuronal activity and neurohypophysial hormone secretion in the rat, J. Neuroendocrinol. 1, 35–46.
  • Leng, G., Brown, C.H., Bull, P.M., Brown, D., Scullion, S., Currie, J., Blackburn-Munro, R.E., Feng, J., Onaka, T., Verbalis, J.G., Russell, J.A. and Ludwig, M. (2001) Responses of magnocellular neurons to osmotic stimulation involves coactivation of excitatory and inhibitory input: an experimental and theoretical analysis, J. Neurosci. 21, 6967–6977.
  • Li, J., You, Z., Chen, Z., Song, C. and Lu, C. (2001) Chronic morphine treatment inhibits oxytocin release from the supraoptic nucleus slices of rats, Neurosci. Lett. 300, 54–58.
  • Lichtman, A.H. and Martin, B.R. (2002) Marijuana withdrawal syndrome in the animal model, J. Clin. Pharmacol. 42, 20S–27S.
  • Liu, Q.S., Jia, Y.S. and Ju, G. (1997) Nitric oxide inhibits neuronal activity in the supraoptic nucleus of the rat hypothalamic slices, Brain Res. Bull. 43, 121–125.
  • Liu, Q.S., Han, S., Jia, Y.S. and Ju, G. (1999) Selective modulation of excitatory transmission by m-opioid receptor activation in rat supraoptic neurons, J. Neurophysiol. 82, 3000–3005.
  • Ludwig, M. (1998) Dendritic release of vasopressin and oxytocin, J. Neuroendocrinol. 10, 881–895.
  • Ludwig, M., Brown, C.H., Russell, J.A. and Leng, G. (1997) Local opioid inhibition and morphine dependence of supraoptic nucleus oxytocin neurones in the rat in vivo, J. Physiol. 505, 145–152.
  • Ludwig, M., Sabatier, N., Bull, P.M., Landgraf, R., Dayanithi, G. and Leng, G. (2002) Intracellular calcium stores regulate activitydependent neuropeptide release from dendrites, Nature 418, 85–89.
  • Mansour, A., Fox, C.A., Burke, S., Akil, H. and Watson, S.J. (1995) Immunohistochemical localization of the cloned m-opioid receptor in the rat CNS, J. Chem. Neuroanat. 8, 283–305.
  • McKinley, M.J., Pennington, G.L. and Oldfield, B.J. (1996) Anteroventral wall of the third ventricle and dorsal lamina terminalis: headquarters for control of body fluid homeostasis?, Clin. Exp. Pharmacol. Physiol. 23, 271–281.
  • Milane´s, M.V., Laorden, M.L., Chapleur-Chateau, M. and Burlet, A. (1998) Alterations in corticotropin-releasing factor and vasopressin content in rat brain during morphine withdrawal: correlation with hypothalamic noradrenergic activity and pituitary-adrenal response, J. Pharmacol. Exp. Ther. 285, 700–706.
  • Muller, W., Hallermann, S. and Swandulla, D. (1999) Opioidergic modulation of voltage-activated Kþ currents in magnocellular neurons of the supraoptic nucleus in rat, J. Neurophysiol. 81, 1617–1625.
  • Murphy, N.P., Onaka, T., Brown, C.H. and Leng, G. (1997) The role of afferent inputs to supraoptic nucleus oxytocin neurons during naloxone-precipitated morphine withdrawal in the rat, Neuroscience 80, 567–577.
  • Nye, H.E. and Nestler, E.J. (1996) Induction of chronic Fos-related antigens in rat brain by chronic morphine administration, Mol. Pharmacol. 49, 636–645.
  • Ogata, N. and Matsuo, T. (1984) Pharmacological characterization of the magnocellular neuroendocrine cells of the guinea pig supraoptic nucleus in vitro, Neuropharmacology 23, 1215–1218.
  • Onaka, T., Luckman, S.M., Antonijevic, I., Palmer, J.R. and Leng, G. (1995a) Involvement of the noradrenergic afferents from the nucleus tractus solitarii to the supraoptic nucleus in oxytocin release after peripheral cholecystokinin octapeptide in the rat, Neuroscience 66, 403–412.
  • Onaka, T., Luckman, S.M., Guevara-Guzman, R., Ueta, Y., Kendrick, K. and Leng, G. (1995b) Presynaptic actions of morphine: blockade of cholecystokinin-induced noradrenaline release in the rat supraoptic nucleus, J. Physiol. 482, 69–79.
  • Ozaki, M., Shibuya, I., Kabashima, N., Isse, T., Noguchi, J., Ueta, Y., Inoue, Y., Shigematsu, A. and Yamashita, H. (2000) Preferential potentiation by nitric oxide of spontaneous inhibitory postsynaptic currents in rat supraoptic neurones, J. Neuroendocrinol. 12, 273–281.
  • Pow, D.V. and Morris, J.F. (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis, Neuroscience 32, 435–439.
  • Pumford, K.M., Leng, G. and Russell, J.A. (1991) Morphine actions on supraoptic oxytocin neurones in anaesthetized rats: tolerance after i.c.v. morphine infusion, J. Physiol. 440, 437–454.
  • Rinaman, L., Hoffman, G.E., Dohanics, J., Le, W.W., Stricker, E.M. and Verbalis, J.G. (1995) Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats, J. Comp. Neurol. 360, 246–256.
  • Robinson, S.E. (2002) Buprenorphine: an analgesic with an expanding role in the treatment of opioid addiction, CNS Drug Rev. 8, 377–390.
  • Russell, J.A., Neumann, I. and Landgraf, R. (1992a) Oxytocin and vasopressin release in discrete brain areas after naloxone in morphine-tolerant and -dependent anesthetized rats: push-pull perfusion study, J. Neurosci. 12, 1024–1032.
  • Russell, J.A., Pumford, K.M. and Bicknell, R.J. (1992b) Contribution of the region anterior and ventral to the third ventricle to opiate withdrawal excitation of oxytocin secretion, Neuroendocrinology 55, 183–192.
  • Russell, J.A., Leng, G. and Bicknell, R.J. (1995) Opioid tolerance and dependence in the magnocellular oxytocin system: a physiological mechanism?, Exp. Physiol. 80, 307–340.
  • Smart, D., Smith, G. and Lambert, D.G. (1995) Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening, Biochem. J. 305, 577–581.
  • Soldo, B.L. and Moises, H.C. (1998) m-Opioid receptor activation inhibits N- and P-type Ca2þ channel currents in magnocellular neurones of the rat supraoptic nucleus, J. Physiol. 513, 787–804.
  • Srisawat, R., Ludwig, M., Bull, P.M., Douglas, A.J., Russell, J.A. and Leng, G. (2000) Nitric oxide and the oxytocin system in pregnancy, J. Neurosci. 20, 6721–6727.
  • Stern, J.E. and Ludwig, M. (2001) NO inhibits supraoptic oxytocin and vasopressin neurons via activation of GABAergic synaptic inputs, Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1815–R1822.
  • Tyrey, L. and Murphy, L.L. (1988) Inhibition of suckling-induced milk ejections in the lactating rat by delta 9-tetrahydrocannabinol, Endocrinology 123, 469–472.
  • Van Den Brink, W., Goppel, M. and Van Ree, J.M. (2003) Management of opioid dependence, Curr. Opin. Psychiatr. 16, 297–304.
  • Van den Pol, A.N., Wuarin, J.P. and Dudek, F.E. (1990) Glutamate, the dominant excitatory transmitter in neuroendocrine regulation, Science 250, 1276–1278.
  • Vigano, D., Grazia, C.M., Rubino, T., Fezza, F., Vaccani, A., Di, M.V. and Parolaro, D. (2003) Chronic morphine modulates the contents of the endocannabinoid, 2-arachidonoyl glycerol, in rat brain, Neuropsychopharmacology 28, 1160–1167.
  • Wakerley, J.B., Noble, R. and Clarke, G. (1983) Effects of morphine and D-Ala, D-Leu enkephalin on the electrical activity of supraoptic neurosecretory cells in vitro, Neuroscience 10, 73–81.
  • Wotjak, C.T., Ganster, J., Kohl, G., Holsboer, F., Landgraf, R. and Engelmann, M. (1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons, Neuroscience 85, 1209–1222.
  • Yu, G.Z., Kaba, H., Okutani, F., Takahashi, S., Higuchi, T. and Seto, K. (1996) The action of oxytocin originating in the hypothalamic paraventricular nucleus on mitral and granule cells in the rat main olfactory bulb, Neuroscience 72, 1073–1082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.