Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 10, 2007 - Issue 2
999
Views
118
CrossRef citations to date
0
Altmetric
Original

Brain and peripheral angiotensin II play a major role in stress

&
Pages 185-193 | Received 19 Jan 2007, Accepted 16 Mar 2007, Published online: 07 Jul 2009

References

  • Aguilera G. Factors controlling steroid biosynthesis in the zona glomerulosa of the adrenal. J Steroid Biochem Mol Biol 1993; 45: 147–151
  • Aguilera G, Kiss A, Luo X. Increased expression of type1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocrinol 1995a; 7: 775–783
  • Aguilera G, Young WS, Kiss A, Bathia A. Direct regulation of hypothalamic corticotropin-releasing-hormone neurons by angiotensin II. Neuroendocrinology 1995b; 61: 437–444
  • Antoni FA. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 1993; 14: 76–122
  • Armando I, Carranza A, Nishimura Y, Hoe KL, Barontini M, Terrón JA, Falcón-Neri A, Ito T, Juorio AV, Saavedra JM. Peripheral administration of an angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress. Endocrinology 2001; 142: 3880–3889
  • Bains JS, Ferguson AV. Paraventricular nucleus neurons projecting to the spinal cord receive excitatory input from the subfornical organ. Am J Physiol 1995; 268: R625–R633
  • Bains JS, Follwell MJ, Latchford KJ, Anderson JW, Ferguson AV. Slowly inactivating potassium conductance (I(D)): A potential target for stroke therapy. Stroke 2001; 32: 2624–2634
  • Braun-Menéndez E, Fasciolo JC, Leloir LF, Muñoz JM. The substance causing renal hypertension. J Physiol (Lond) 1940; 98: 283–298
  • Bregonzio C, Armando I, Ando H, Jezova M, Baiardi G, Saavedra JM. Antiinflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am J Physiol Gastrointest Liver Physiol 2003; 285: G414–G423
  • Bremner JD, Innis RB, Southwick SM, Staib L, Zoghbi S, Charney DS. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am J Psychiatry 2000; 157: 1120–1126
  • Brunson KL, Grigoriadis DE, Lorang MT, Baram TZ. Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp Neurol 2002; 176: 75–86
  • Castrén E, Saavedra JM. Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ. Endocrinology 1988; 122: 370–372
  • Castrén E, Saavedra JM. Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized, and vasopressin-deficient rats. Proc Natl Acad Sci USA 1989; 86: 725–729
  • De Gasparo M, Siragy HM. The AT2 receptor: Fact, fancy and fantasy. Regul Pept 1999; 81: 11–24
  • Ferguson AV, Washburn DLS. Angiotensin II: A peptidergic neurotransmitter in central autonomic pathways. Prog Neurobiol 1998; 54: 169–192
  • Ferguson AV, Washburn DLS, Latchford KJ. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med 2001; 226: 85–96
  • Filaretova LP, Filaretov AA, Makara GB. Corticosterone increase inhibits stress-induced gastric erosions in rats. Am J Physiol 1998; 274: G1024–G1030
  • Ganong WF, Murakami K. The role of angiotensin II in the regulation of ACTH secretion. Ann N Y Acad Sci 1987; 512: 176–186
  • Goldstein DS, McEwen B. Allostasis, homeostats, and the nature of stress. Stress 2002; 5: 55–58
  • Guo DF, Uno S, Ishihata A, Nakamura N, Inagami T. Identification of a cis-acting glucocorticoid responsive element in the rat angiotensin II type 1A promoter. Circ Res 1995; 77: 249–257
  • Hamaguchi M, Watanabe T, Higuchi K, Tominaga K, Fujiwara Y, Arakawa T. Mechanisms and roles of neutrophil infiltration in stress-induced gastric injury in rats. Dig Dis Sci 2001; 46: 2708–2715
  • Heinemann A, Sattler V, Jocic M, Wienen W, Holzer P. Effect of angiotensin II and telmisartan, an angiotensin1 receptor antagonist, on rat gastric mucosal blood flow. Aliment Pharmacol Ther 1999; 13: 347–355
  • Hilbers U, Peters J, Bornstein SR, Correa FM, Jöhren O, Saavedra JM, Ehrhart-Bornstein M. Local renin-angiotensin system is involved in K+-induced aldosterone secretion from human adrenocortical NCI-H295 cells. Hypertension 1999; 33: 1025–1030
  • Israel A, Strömberg C, Tsutsumi K, Garrido MDR, Torres M, Saavedra JM. Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla. Brain Res Bull 1995; 38: 441–446
  • Ito T, Yamakawa H, Bregonzio C, Terrón JA, Falcón-Neri A, Saavedra JM. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke 2002; 33: 2297–2303
  • Jezova D, Ochedalski T, Kiss A, Aguilera G. Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. J Neuroendocrinol 1998; 10: 67–72
  • Jezova M, Armando I, Bregonzio C, Yu Z-X, Qian S, Ferrans VJ, Imboden H, Saavedra JM. Angiotensin II AT1 and AT2 receptors contribute to maintain basal adrenomedullary norepinephrine synthesis and tyrosine hydroxylase transcription. Endocrinology 2003; 144: 2092–2101
  • Keck ME, Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 2001; 22: 835–844
  • Keller-Wood ME, Shinsako J, Dallman MF. Inhibition of the adrenocorticotropin and corticosteroid responses to hypoglycemia after prior stress. Endocrinology 1983; 113: 491–496
  • Latchford KJ, Ferguson AV. Ang II-induced excitation of paraventricular nucleus magnocellular neurons: A role for glutamate interneurons. Am J Physiol Regul Integr Comp Physiol 2004; 286: R894–R902
  • Latchford KJ, Ferguson AV. Angiotensin depolarizes parvocellular neurons in paraventricular nucleus through modulation of putative nonselective cationic and potassium conductances. Am J Physiol Regul Integr Comp Physiol 2005; 289: R52–R58
  • Leong DS, Terrón JA, Falcón-Neri A, Armando I, Ito T, Jöhren O, Tonelli LH, Hoe K-L, Saavedra JM. Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT1A, AT1B and AT2 receptors. Neuroendocrinology 2002; 75: 227–240
  • Lind RW, Swanson LW, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study Neuroendocrinology 1985; 40: 2–24
  • Livett BG, Marley PD, Wan DC, Zhou XF. Peptide regulation of adrenal medullary function. J Neural Transm Suppl 1990; 29: 77–89
  • Lokhandwala MF, Amelang E, Buckley JP. Facilitation of cardiac sympathetic function by angiotensin II: Role of presynaptic angiotensin receptors. Eur J Pharmacol 1978; 52: 405–409
  • Medina JH, Novas ML, Wolfman CNV, De Stein ML, DeRobertis E. Benzodiazepine receptors in rat cerebral cortex and hippocampus undergo rapid and reversible changes after acute stress. Neuroscience 1983; 9: 331–335
  • Morsing P. Candesartan: A new generation angiotensin II AT1 receptor blocker: Pharmacology, antihypertensive efficacy, renal function, and renoprotection. J Am Soc Nephrol 1999; 10: S248–S254
  • Nishimura Y, Ito T, Hoe K-L, Saavedra JM. Chronic peripheral administration of the angiotensin II AT1 receptor antagonist candesartan blocks brain AT1 receptors. Brain Res 2000a; 871: 29–38
  • Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 2000b; 31: 2478–2486
  • Page IH. Hypertension mechanisms. Grune & Stratton, New York 1987; 1102
  • Page IH, Helmer OM. A crystalline pressor substance (angiotensin) resulting from the reaction between renin and renin activator. J Exp Med 1940; 71: 29–42
  • Pan HL. Brain angiotensin II and synaptic transmission. Neuroscientist 2004; 10: 422–431
  • Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86: 747–803
  • Peng JF, Phillips MI. Opposite regulation of brain angiotensin type1 and type 2 receptors in cold-induced hypertension. Regul Pept 2001; 97: 91–102
  • Saavedra JM. Brain and pituitary angiotensin. Endocrinol Rev 1992; 13: 329–380
  • Saavedra JM. Emerging features of brain angiotensin receptors. Regul Pept 1999; 85: 31–45
  • Saavedra JM. Brain angiotensin II: New developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 2005; 25: 485–512
  • Saavedra JM, Ando H, Armando I, Baiardi G, Bregonzio C, Juorio A, Macova M. Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regul Pept 2005; 128: 227–238
  • Saavedra JM, Armando I, Bregonzio C, Juorio A, Macova M, Pavel J, Sanchez-Lemus E. A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharmacology 2006; 31: 1123–1134
  • Serra M, Concas A, Mostallino MC, Chessa MF, Stomati M, Petraglia F, Genazzani AR, Biggio G. Antagonism by pivagabine of stress-induced changes in GABAA receptor function and corticotropin-releasing factor concentrations in rat brain. Psychoneuroendocrinology 1999; 24: 269–284
  • Sever PS. Key features of candesartan cilexetil and a comparison with other angiotensin II receptor antagonists. J Hum Hypertens 1999; 13(Suppl. 1)S3–S10
  • Shigematsu K, Saavedra JM, Plunkett LM, Kurihara M, Correa FMA. Angiotensin II binding sites in the anteroventral-third ventricle (AV3V) area and related structures of the rat brain. Neurosci Lett 1986; 67: 37–41
  • Smith TA. Type A gamma-aminobutyric acid (GABAA) receptor subunits and benzodiazepine binding: Significance to clinical syndromes and their treatment. Br J Biomed Sci 2001; 58: 111–121
  • Sumitomo T, Suda T, Nakano Y, Tozawa F, Yamada M, Demura H. Angiotensin II increases the corticotropin-releasing factor messenger ribonucleic acid levels in the rat hypothalamus. Endocrinology 1991; 128: 2248–2252
  • Timmermans PB. Pharmacological properties of angiotensin II receptor antagonists. Can J Cardiol 1999; 15(Suppl. F)26 F–28 F
  • Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. Angiotensin II receptors and angiotensin II receptors antagonists. Pharmacol Rev 1993; 45: 205–251
  • Tsutsumi K, Saavedra JM. Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 1991a; 261: R209–R216
  • Tsutsumi K, Saavedra JM. Angiotensin II receptor subtypes in median eminence and basal forebrain areas involved in the regulation of pituitary function. Endocrinology 1991b; 129: 3001–3008
  • Volpi S, Rabadan-Diehl C, Aguilera G. Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress 2004; 7: 75–83
  • Wang D, Gelband CH, Sumners C, Posner P. Mechanisms underlying the chronotropic effect of angiotensin II on cultured neurons from rat hypothalamus and brain stem. J Neurophysiol 1997; 78: 1013–1020
  • Wong PC, Hart SD, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PB. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD 123177 (AII-2). J Pharmacol Exp Ther 1990; 255: 584–592
  • Xang G, Xi ZX, Wan Y, Wang H, Bi G. Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol Signals 1993; 2: 166–172
  • Yang G, Wan Y, Zhu Y. Angiotensin II—an important stress hormone. Biol Signals 1996; 5: 1–8
  • Zaika O, Lara LS, Gamper N, Helgemann DW, Jaffe DB, Shapiro MS. Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+ channels. J Physiol 2006; 575: 49–67

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.