425
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Finite element modelling and simulations in cardiovascular mechanics and cardiology: A bibliography 1993–2004

Pages 59-81 | Published online: 19 Aug 2006

References

Cardiovascular soft tissue modelling, material properties

  • Blair , DM and Halperin , HR . 1996 . Hand-held, dynamic indentation system for measuring myocardial transverse stiffness . Biomed. Instrum. Tech. , 30 ( 6 ) : 517 – 525 .
  • Creswell LL et al. An experimental method for evaluating constitutive models of myocardium in in vivo hearts Am. J. Physiol. 267 2 853 863 1994
  • Criscione JC et al. Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family J. Mech. Phys. Solids 50 8 1681 1702 2002
  • Driessen NJB et al. Remodelling of continuously distributed collagen fibres in soft connective tissues J. Biomech. 36 8 1151 1158 2003
  • Gaballa MA et al. Hemodynamic and two-phase material properties of the arterial wall in rats with heart failure 1994 Int. Mech. Eng. Cong. Expo. BED 28 3 4 1994
  • Hafner J et al. Hyperelastic description of elastomechanic properties of the heart: a new material law and its application Biomedizin. Technik 47 Supp 770 773 2002
  • Han GJ et al. Application of finite element analysis with optimization to assess the in vivo non-linear myocardial material properties using echocardiograph Med. Biol. Eng. Comput. 31 5 459 467 1993
  • Holzapfel , GA and Weizsacker , HW . 1998 . Biomechanical behavior of the arterial wall and its numerical characterization . Comp. Biol. Med. , 28 ( 4 ) : 377 – 392 .
  • Holzapfel GA et al. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis Eur. J. Mech., A/Solids 21 3 441 463 2002
  • Holzapfel GA et al. Comparison of a multi-layered structural model for arterial walls with a Fung-type model, and issues of material stability J. Biomech. Eng. ASME 126 2 264 275 2004
  • Hunter , PJ . 1995 . Myocardial constitutive laws for continuum mechanics models of the heart . Adv. Exp. Med. Biol. , 382 : 303 – 318 .
  • Lally C et al. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension Ann. Biomed. Eng. 32 10 1355 1364 2004
  • LeGrice IJ et al. Laminar structure of the heart: a mathematical model Am. J. Physiol. 272 2466 2476 1997
  • Liu H Shi P Simultaneous estimation of left ventricular motion and material properties with maximum a posteriori strategy Conf. Computer Vision Pattern Recogn. I/161 2003 Madison, IEEE
  • McAfee MA et al. Experimental/numerical approach to the determination of material properties in large arteries 1994 Int. Mech. Eng. Cong. Expo. BED 28 111 112 1994 ASME
  • Moulton MJ et al. Inverse material identification algorithm for determining in vivo myocardial material properties 15th Ann. Int. Conf. IEEE Eng. Medic. 901 902 1993 San Diego
  • Moulton MJ et al. Inverse approach to determining myocardial material properties J. Biomech. 28 8 935 948 1995
  • Moulton MJ et al. Myocardial material property determination in the in vivo heart using magnetic resonance imaging Int. J. Cardiac Imaging 12 3 153 167 1996
  • Prendergast PJ et al. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite element modelling J. Biomech. Eng. ASME 125 5 692 699 2003
  • Remme EW et al. Development of an in vivo method for determining material properties of passive myocardium J. Biomech. 37 5 669 678 2004
  • Schmid P et al. The anisotropic structure of the human left and right ventricles Tech. Health Care 5 1/2 29 43 1997
  • Shao H et al. A resistor interpretation of general anisotropic cardiac tissue Math. Biosci. 187 2 155 174 2004
  • Shi P Liu H Stochastic finite element framework for cardiac kinematics function and material property analysis 5th MICCAI 2002 634 641 2002 Tokyo
  • Shi , P and Liu , H . 2003 . Stochastic finite element framework for simultaneous estimation of cardiac kinematic functions and material parameters . Med. Image Anal. , 7 ( 4 ) : 445 – 464 .
  • Simon BR et al. Data reduction methods for determination of material properties for porohyperelastic-transport-swelling (PHETS) FE models of large arteries 1997 Bioeng. Conf. BED 35 35 36 1997 ASME
  • Simon BR et al. Identification and determination of material properties for porohyperelastic analysis of large arteries J. Biomech. Eng. ASME 120 2 188 194 1998
  • Simon BR et al. Porohyperelastic-transport-swelling theory, material properties and finite element models for large arteries Int. J. Solids Struct. 35 34/35 5021 5031 1998
  • Simon BR et al. Porohyperelastic finite element models for large arteries subjected to cyclic pressure 1998 ASME Int. Mech. Eng. Cong. Expo. BEd 39 257 258 1998
  • Simon BR et al. Porohyperelastic-transport-swelling finite element models: applications and material property determination for large arteries Comp. Meth. Biomech. Biomed. Eng. 505 511 1998 Gordon and Breach
  • Simon BR et al. Porohyperelastic finite element analysis of large arteries using ABAQUS J. Biomech. Eng. ASME 120 2 296 298 1998
  • Srinivasan , R and Perucchio , R . 1994 . Finite element analysis of anisotropic non-linear incompressible elastic solids by a mixed model . Int. J. Num. Meth. Eng. , 37 ( 18 ) : 3075 – 3092 .
  • Srinivasan R et al. Finite element analysis of an anisotropic incompressible pseudoelastic model for the active stage 16 embryonic chick heart 1994 Int. Mech. Eng. Cong. Expo. BED 28 23 24 1994 ASME
  • Sun W Biomechanical simulations of heart valve biomaterials PhD Thesis University of Pittsburgh 2003
  • Tanaka , E and Tanaka , O . 1997 . Constitutive modeling of cardiac muscle taking account of contraction mechanism . Trans. Jpn. Soc. Mech. Eng. Ser C , 63 ( 607 ) : 803 – 809 .
  • Trahey GE et al. Arterial stiffness measurements with acoustic radiation force impulse imaging Proc. SPIE 5035 235 241 2003
  • Vander Sloten et al. Applications of computer modelling for the design of orthopaedic, dental and cardiovascular biomaterials Proc. Inst. Mech. Eng. Part H 212 6 489 500 1998
  • Zamir EA Material properties of the embryonic chick heart during cardiac looping morphogenesis DSc Thesis Washington University 2003
  • Zamir EA Taber LA Determining material properties of the embryonic chick heart during cardiac looping morphogenesis 2nd Joint EMBS-BMES Conf. 404 405 2002 Houston, IEEE
  • Zamir , EA and Taber , LA . 2004 . Material properties and residual stress in the stage 12 chick heart during cardiac looping . J. Biomech. Eng. ASME , 126 ( 6 ) : 823 – 830 .
  • Zile MR et al. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells Am. J. Physiol. 274 6 H2188 1998

Mechanisms of cardiovascular components

Myocardium

  • Costa KD et al. Three-dimensional FEM for large elastic deformations of ventricular myocardium-I: cylindrical and spherical polar coordinates J. Biomech. Eng. ASME 118 4 452 463 1996
  • Costa KD et al. Three-dimensional FEM for large elastic deformations of ventricular myocardium-II: prolate spheroidal coordinates J. Biomech. Eng. ASME 118 4 464 472 1996
  • Emery JL Omens JH Mechanical regulation of myocardial growth during volume-overload hypertrophy in the rat J. Appl. Physiol. 273 3 H1198 1997 ASME
  • Emery JL Omens JH Mechanical regulation of growth during volume overload hypertrophy in the rat heart 1997 Bioeng. Conf. BED 35 471 472 1997 ASME
  • Franz T et al. Forward solution of chaotic myocardial activation Computers Cardiol. 26 117 120 1999 IEEE
  • Gotteiner NL et al. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction Am. J. Cardiac Imaging 9 3 185 194 1995
  • Guccione JM Okamoto RJ Epicardial suction: a new approach to mechanical testing of myocardium 1994 Int. Mech. Eng. Cong. Expo. BED 28 9 10 1994 ASME
  • Honda H et al. Increased regional systolic myocardial stiffness of the left ventricle during coronary artery occlusion in a dog: analysis of the FE model Tohoku J. Exp. Med. 177 2 125 137 1995
  • May-Newman , K and McCulloch , AD . 1998 . Homogenization modeling for the mechanics of perfused myocardium . Prog. Biophys. Mol. Biol. , 69 ( 2/3 ) : 463 – 481 .
  • Pao , YC . 1994 . Contracting strain of in vivo heart wall muscle . Biomed. Eng. Appl. Basis Commun. , 6 ( 3 ) : 392 – 402 .
  • Pao YC Ritman EL Quantification of instantaneous extension and contraction of in vivo myocardial fiber 1994 Int. Mech. Eng. Cong. Expo. BED 28 7 8 1994 ASME
  • Pao , YC and Ritman , EL . 1994, ASME . Inverse determination of global and regional mechanical properties of in vivo heart wall . Inverse Prob. Mech. , AMD 186 : 91 – 98 .
  • Pao YC et al. Effect of regional coronary occlusion on myocardial fiber diastolic extension assessed with a myocardium-blood model 1995 ASME Int. Mech. Eng. Cong. Expo. BED 31 251 252 1995 ASME
  • Ramon C et al. The effect of volume currents due to myocardial anisotropy on body surface potentials Phys. Med. Biol. 47 7 1167 1184 2002
  • Ramon C et al. Effect of myocardial anisotropy on the torso current flow patterns, potentials and magnetic fields Phys. Med. Biol. 45 5 1141 1150 2000
  • Rothman NS Indentation of finite thickness hyperelastic materials: a parametric investigation with implications for myocardium PhD Thesis The Johns Hopkins University 1994
  • Sipkema P et al. Coronary artery resistance changes depend on how surrounding myocardial tissue is stretched Am. J. Physiol. 270 3 924 934 1996
  • Splinter R et al. Myocardial temperature distribution under CW Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment Appl. Optics 34 3 391 399 1995
  • Tomlinson KA et al. Modelling myocardial excitation wavefront propagation in ventricles by finite element solution of an eikonal equation IEEE Eng. Medic. Biol. Soc. Conf. 1199 1999
  • Tomlinson KA et al. A finite element method for an eikonal equation model of myocardial excitation wavefront propagation SIAM J. Appl. Math. 63 1 324 350 2002
  • Tsai JZ Measurement of in vivo and in vitro swine myocardial resistivity PhD Thesis University of Wisconsin-Madison 2001
  • Tysler M Tinova M Representation of myocardium depolarization by simple models Computers Cardiol. 1993 703 706 1993 London, IEEE
  • Wang Y et al. An investigation of the importance of myocardial anisotropy in finite element modeling of the heart: methodology and application IEEE Trans. Biomed. Eng. 48 12 1377 1389 2001
  • Xie W Multi-scale modeling and nonlinear finite element analysis of the trabeculated embryonic heart PhD Thesis The University of Rochester 2002
  • Xie W Perucchio R Multiscale modeling of the trabeculated myocardium 5th US Nat. Cong. Comput. Mech. 252 253 1999 Boulder
  • Yettram , AL and Beecham , MC . 1998 . Analytical method for the determination of along-fibre to cross-fibre elastic modulus ratio in ventricular myocardium—a feasibility study . Med. Eng. Phys. , 20 ( 2 ) : 103 – 108 .
  • Zahalak GI et al. Effects of cross-fiber deformation on axial fiber stress in myocardium J. Biomech. Eng. ASME 121 4 376 385 1999
  • Zhu Y Pelc NJ Spatiotemporal finite element mesh model of cyclical deforming motion and its application in myocardial motion analysis using phase contrast MRI 1997 Int. Conf. Image Process. 117 120 1997 St Barbara, IEEE

Right and left ventricle

  • Bovendeerd PHM et al. Influence of endocardial–epicardial crossover of muscle fibers on left ventricular wall mechanics J. Biomech. 27 7 941 951 1994
  • Choi , SM and Kim , MH . 2001 . Motion visualization of human left ventricle with a time-varying deformable model for cardiac diagnosis . J. Visual. Comp. Animat. , 12 ( 2 ) : 55 – 66 .
  • Choi SM Kim MH Modelling of the left ventricle with a dynamic blob model Int. Conf. Visual. Comp. 289 293 1999 CSI, Kluwer Acad
  • Costa KD McCulloch AD Relationship between regional geometry and mechanics in a three-dimensional finite element model of the left ventricle 1994 Int. Mech. Eng. Cong. Expo. BED 28 5 6 1994 ASME
  • Costa KD et al. Three-dimensional residual strain in the midanterior canine left ventricle Am. J. Physiol. 273 1968 1976 1997
  • Cupps BP et al. Severe aortic insufficiency and normal systolic function: determining regional left ventricular wall stress by finite element analysis Ann. Thorac. Surg. 76 3 668 675 2003
  • Ding T Schoephoerster RT Evaluation of global left ventricular function based on simulated flow dynamics computed from regional wall motion 1997 Bioeng. Conf. BED 35 193 194 1997 ASME
  • Eberhardt AW Sanford JA Experimental and finite element study of ventricular wall stress models Winter Ann. Meet. BED 26 563 566 1993 New Orleans, ASME
  • Emery JL et al. Biaxial mechanics of the passively overstretched left ventricle Am. J. Physiol. 272 5 2299 2305 1997
  • Feng B et al. Estimation of mechanical properties from gated SPECT and cine MRI data using a finite element mechanical model of the left ventricle IEEE Nucl. Sci. Symp. Med. Imaging Conf. 3 20/46 2000 IEEE
  • Feng B et al. Estimation of mechanical properties from gated SPECT and cine MRI data using a finite element mechanical model of the left ventricle IEEE Trans. Nucl. Sci. 48 3 725 733 2001
  • Feng B et al. Least squares estimation of mechanical tissue parameters from cine MRI data using a finite element mechanical model of the left ventricle IEEE Nucl. Sci. Symp. Med. Imaging Conf. 1687 1690 2001 San Diego, IEEE
  • Franzone PC et al. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II-Effects of fiber architecture and ventricular geometry Math. Biosci. 147 2 131 171 1998
  • Guccione JM et al. Three-dimensional finite element analysis of anterior–posterior variations in local sarcomere length and active fiber stress during left ventricle ejection Winter Ann. Meet. BED 26 571 574 1993 New Orleans, ASME
  • Guccione JM et al. Finite element stress analysis of left ventricular mechanics in the beating dog heart J. Biomech. 28 10 1167 1177 1995
  • Guccione JM et al. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study J. Thorac. Cardiovasc. Surg. 122 3 592 599 2001
  • Gurson AL Rachakonda VBS First order method for coupling ventricular pressure and output to the condition of the heart muscle in a finite element analysis 1995 Bioeng. Conf. BED 29 175 176 1995 Beever Creek, ASME
  • Haber E et al. Motion analysis of the right ventricle from MRI images MICCAI'98 177 188 1998 Springer
  • Haber I et al. Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI Med. Image Anal. 4 4 335 355 2000
  • Holmes , JW . 2004 . Determinants of left ventricular shape change during filling . J. Biomech. Eng. ASME , 126 ( 1 ) : 98 – 103 .
  • Honda H et al. Increased regional systolic myocardial stiffness of the left ventricle during coronary artery occlusion in a dog: analysis of the FE model Tohoku J. Exp. Med. 177 2 125 137 1995
  • Liu H Shi P Simultaneous estimation of left ventricular motion and material properties with maximum a posteriori strategy Conf. Computer Vision Pattern Recogn. I/161 2003 Madison, IEEE
  • McCulloch AD Guccione JM Three-dimensional finite element analysis of regional ventricular function 15th Ann. Int. Conf. IEEE Eng. Med. 584 585 1993 San Diego
  • Mero , MG and Susin , A . 2002 . 3D deformable multiresolution interactive LV model . Computers Cardiol. , 29 : 617 – 620 .
  • Moulton MJ et al. Calculation of regional ventricular wall strains using magnetic resonance imaging tissue-tagging Int. Conf. IEEE Eng. Med. Biol. Soc. 549 550 1994 Baltimore
  • Moulton MJ et al. Spline surface interpolation for calculating 3-D ventricular strains from MRI tissue tagging Am. J. Physiol. 270 1 281 297 1996
  • Nash , MP and Hunter , PJ . 2000 . Computational mechanics of the heart. From tissue structure to ventricular function . J. Elast. , 61 ( 1/3 ) : 113 – 141 .
  • Nehorai A Jeremic A Estimating mechanical properties of the left ventricle using dynamic modeling and magnetic resonance imaging Computers Cardiol. 25 257 260 1998 IEEE
  • Okamoto RJ et al. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall J. Biomech. Eng. ASME 122 5 479 487 2000
  • Omens JH et al. Effects of pressure overload on the passive mechanics of the rat left ventricle Ann. Biomed. Eng. 23 2 152 163 1995
  • Panescu D et al. Measurement of ventricular volume from blood conductance using two-dimensional finite element analysis Physiol. Measur. 15 1 49 56 1994
  • Pao YC et al. Finite element assessment of change in regional ventricular wall muscle stiffness due to coronary occlusion Winter Ann. Meet. BED 26 567 570 1993 New Orleans, ASME
  • Park J et al. Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM Med. Image Anal. 1 1 53 71 1996
  • Park J et al. Volumetric deformable models with parameter functions: a new approach to the 3D motion analysis of the LV from MRI-SPAMM IEEE Int. Conf. Comp. Vision 700 705 1995 Cambridge
  • Pirolo JS et al. Mathematical three-dimensional solid modeling of biventricular geometry Ann. Biomed. Eng. 21 3 199 219 1993
  • Remme EW et al. Extraction and quantification of left ventricular deformation modes IEEE Trans. Biomed. Eng. 51 11 1923 1931 2004
  • Rijcken J et al. Optimization of left ventricular fibre orientation of the normal heart for homogeneous sarcomere length during ejection Eur. J. Morphol. 34 1 39 46 1996
  • Rijcken J et al. Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection J. Biomech. 30 10 1041 1049 1997
  • Rijcken J et al. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection Ann. Biomed. Eng. 27 3 289 297 1999
  • Rodriguez EK Residual stress in the rat left ventricle during growth and remodeling PhD Thesis University of California, San Diego 1993
  • Rogers JM Finite element modeling of cardiac activation dynamics PhD Thesis University of California, San Diego 1993
  • Rogers , JM . 2002 . Wave front fragmentation due to ventricular geometry in a model of the rabbit heart . Chaos , 12 ( 3 ) : 779 – 787 .
  • Sawaki Y et al. Numerical simulator for estimation of mechanical functions of left ventricle (3rd Rep, Stress distribution in left ventricular wall) Trans. Jpn. Soc. Mech. Eng. Ser A 63 611 1533 1538 1997
  • Schmid P et al. The anisotropic structure of the human left and right ventricles Tech. Health Care 5 1/2 29 43 1997
  • Schoephoerster R et al. Finite analytic model for left ventricular systolic flow dynamics J. Eng. Mech. ASCE 119 4 733 747 1993
  • Stevens , C and Hunter , PJ . 2003 . Sarcomere length changes in a 3D mathematical model of the pig ventricles . Prog. Biophys. Mol. Biol. , 82 ( 1/3 ) : 229 – 241 .
  • Stevens C et al. Ventricular mechanics in diastole: material parameter sensitivity J. Biomech. 36 5 737 748 2003
  • Sung D Effects of mechanical load on ventricular action potential propagation and repolarization PhD Thesis University of California, San Diego 2001
  • Tokuda M et al. Numerical simulator for estimation of mechanical function of human left ventricle, study of basic system JSME Int. J. Ser A 37 1 64 70 1994
  • Tokuda M et al. 3-D simulation of left ventricular performance 3rd World Cong. Comput. Mech. R7 5 1994 Chiba, Japan
  • Tokuda M et al. Numerical simulator for estimation of mechanical functions of left ventricle (2nd Rep, 3-D FEM mechanical model), Trans Jpn. Soc. Mech. Eng. Ser A 60 578 2478 2483 1994
  • Usyk TP et al. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle J. Elast. 61 1/3 143 164 2000
  • Vendelin M et al. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, lead to high efficiency Am. J. Physiol. Heart Circ. Physiol. 283 3 1072 1081 2002
  • Veress AI et al. Quantification of 3D left ventricular deformation using hyperelastic warping: comparisons between MRI and PET imaging Computers Cardiol. 29 709 712 2002
  • Vetter , FJ and McCulloch , AD . 1998 . Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy . Prog. Biophys. Mol. Biol. , 69 ( 2/3 ) : 157 – 183 .
  • Vetter , FJ and McCulloch , AD . 2000 . Three-dimensional stress and strain in passive rabbit left ventricle: a model study . Ann. Biomed. Eng. , 28 ( 7 ) : 781 – 792 .
  • Vetter , FJ and McCulloch , AD . 2001 . Mechanoelectric feedback in a model of the passively inflated left ventricle . Ann. Biomed. Eng. , 29 ( 5 ) : 414 – 426 .
  • Vetter FJ et al. A finite element model of passive mechanics and electrical propagation in the rabbit ventricles Computers Cardiol. 25 705 708 1998
  • Waldman , LK and McCulloch , AD . 1993 . Nonhomogeneous ventricular wall strain: analysis of errors and accuracy . J. Biomech. Eng. ASME , 115 ( 4 ) : 497 – 502 .
  • Waldman LK et al. Distributed mechanics of the canine right ventricle: effects of varying preload J. Biomech. 29 3 373 381 1996
  • Watanabe H et al. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method Biophys. J. 87 3 2074 2085 2004
  • Wise RG et al. Geometrical models of left ventricular contraction from MRI of the normal and spontaneously hypertensive rat heart Phys. Med. Biol. 44 10 2657 2676 1999
  • Wunsche , B and Young , AA . 2003 . The visualization and measurement of left ventricular deformation using finite element models . J. Visual Languages Comput. , 14 ( 4 ) : 299 – 326 .
  • Yettram , AL and Beecham , MC . 1998 . Analytical method for the determination of along-fibre to cross-fibre elastic modulus ratio in ventricular myocardium—a feasibility study . Med. Eng. Phys. , 20 ( 2 ) : 103 – 108 .
  • Yettram AL et al. Some factors that influence mechanical behavior of the left ventricle of the human heart in late systole: a feasibility study using FEA Heart Vessels 13 6 290 301 1998
  • Young AA et al. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy Circulation 90 2 854 867 1994
  • Young AA et al. Three-dimensional changes in left and right ventricular geometry in chronic mitral regulation Am. J. Physiol. 271 6 2689 2700 1996
  • Young AA et al. Right ventricular midwall surface motion and deformation using magnetic resonance tagging Am. J. Physiol. 271 6 2677 2688 1996

Mitral valve

  • Chen L et al. Nonhomogeneous deformation in the arterior leaflet of the mitral valve Ann. Biomed. Eng. 32 12 1599 1606 2004
  • Cochran , RP and Kunzelman , KS . 1998 . Effect of papillary muscle position on mitral valve function: relationship to homografts . Ann. Thorac. Surg. , 66 ( 6 ) : S155 – S161 .
  • Einstein D et al. Non-invasive determination of mitral valve acoustic properties: a proposed method to determine tissue alterations due to disease 1999 IEEE Eng. Med. Biol. Soc. Conf. 183 1999
  • Einstein DR Nonlinear acoustic analysis of the mitral valve PhD Thesis University of Washington 2002
  • Einstein DR et al. Haemodynamic determinants of the mitral valve closure sound: a finite element study Med. Biol. Eng. Comput. 42 6 832 846 2004
  • Kunzelman KS et al. Finite element analysis of mitral valve pathology J. Long-Term Effects Med. Implants 3 3 161 179 1993
  • Kunzelman KS et al. Finite element analysis of the mitral valve J. Heart Valve Disease 2 3 326 340 1993
  • Kunzelman KS et al. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model Cardiovasc. Surg. 5 4 427 434 1997
  • Kunzelman KS et al. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis Ann. Thorac. Surg. 66 6 S198 S205 1998
  • Sacks MS et al. Surface strains in the anterior leaflet of the functioning mitral valve Ann. Biomed. Eng. 30 10 1281 1290 2002
  • Tapia MG et al. A three-dimensional coupled fluid–structure computational model of mitral valve function 1999 IEEE Eng. Medic. Biol. Soc. Conf. 172 1999

Aorta

  • Beck A et al. Stress analysis of the aortic valve with and without the sinuses of valsalva J. Heart Valve Disease 10 1 1 11 2001
  • Beller CJ et al. Role of aortic root motion in the pathogenesis of aortic dissection Circulation 109 6 763 769 2004
  • Billiar KL Sacks MS Numerical-experimental method for integrating strain and fiber structure for the aortic valve 1997 Bioeng. Conf. BED 35 149 150 1997 ASME
  • Boerboom RA et al. Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve Ann. Biomed. Eng. 31 9 1040 1053 2003
  • Cupps BP et al. Severe aortic indufficiency and normal systolic function: determining regional left ventricular wall stress by finite element analysis Ann. Thorac. Surg. 76 3 668 675 2003
  • De Hart J Fluid–structure interaction in the aortic heart valve: a three-dimensional computational analysis PhD Thesis Tech. Univ. Eindhoven 2002
  • De Hart J et al. A two-dimensional fluid–structure interaction model of the aortic valve J. Biomech. 33 9 1079 1088 2000
  • De Hart J et al. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve J. Biomech. 36 1 103 112 2003
  • De Hart J et al. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve J. Biomech. 36 5 699 712 2003
  • De Hart J et al. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole J. Biomech. 37 3 303 311 2004
  • DeGroff CG et al. Insight into the effect of aortic compliance on Doppler diastolic flow patterns seen in coarctation of the aorta: a numeric study J. Am. Soc. Echocardiogr. 16 2 162 169 2003
  • Driessen NJB et al. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve J. Biomech. Eng. ASME 125 4 549 557 2003
  • Ferraresi C et al. Opening mechanics of the aortic root: non homogeneous and non isotropic FEM model of biological structure Mech. Res. Commun. 25 4 405 413 1998
  • Gnyaneshwar R et al. Dynamic analysis of the aortic valve using a finite element model Ann. Thorac. Surg. 73 4 1122 1129 2002
  • Grande Allen KJ et al. Finite element analysis of aortic valve-sparing: influence of graft shape and stiffness IEEE Trans. Biomed. Eng. 48 6 647 659 2001
  • Grande KJ et al. Stress variations in the human aortic root and valve: the role of anatomic asymmetry Ann. Biomed. Eng. 26 4 534 545 1998
  • Grande KJ et al. Mechanisms of aortic valve incompetence in aging: a finite element model J. Heart Valve Disease 8 2 149 156 1999
  • Grande KJ et al. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation Ann. Thorac. Surg. 69 6 1851 1857 2000
  • Grande-Allen KJ et al. Re-creation of sinuses is important for sparing the aortic valve: a finite element study J. Thorac. Cardiovasc. Surg. 119 4 753 763 2000
  • Hettrick DA et al. In vitro and finite element model investigation of the conductance technique for measurement of aortic segmental volume Ann. Biomed. Eng. 24 6 675 684 1996
  • Hettrick DA et al. Finite element model determination of correction factors used for measurement of aortic diameter via conductance Ann. Biomed. Eng. 27 2 151 159 1999
  • Howard IC et al. On the opening mechanism of the aortic valve: some observations from simulations J. Med. Eng. Tech. 27 6 259 266 2003
  • Labrosse MR et al. Aortic root movement: a potential risk factor for aortic dissection Ann. Int. Conf. IEEE Eng. Medic. Biol. 1280 1281 2002 Houston, IEEE
  • Li J et al. A nonlinear anisotropic model for porcine aortic heart valves J. Biomech. 34 10 1279 1289 2001
  • Lim KH et al. Flat or curved pericardial aortic valve cusps: a finite element study J. Heart Valve Disease 13 5 792 797 2004
  • Mapara N et al. Numerical simulations of flow in flared sections of the human infrarenal aorta 14th South. Biomed. Eng. Conf. 34 37 1995 Shreveport, IEEE
  • Matsumoto T et al. Residual stress and strain in the lamellar unit of the porcine aorta: experiment and analysis J. Biomech. 37 6 807 815 2004
  • Nicosia MA et al. Coupled fluid–structure finite element modeling of the aortic valve and root Ann. Int. Conf. IEEE Eng. Med. Biol. 1278 1279 2002 Houston, IEEE
  • Nicosia MA et al. Biaxial mechanical properties of porcine ascending aortic wall tissue J. Heart Valve Disease 11 5 680 686 2002
  • Nicosia MA et al. A coupled fluid–structure finite element model of the aortic valve and root J. Heart Valve Disease 12 6 781 789 2003
  • Ranga A et al. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties J. Med. Eng. Tech. 28 3 95 103 2004
  • Shim , EB and Chang , KS . 1997 . Numerical analysis of three-dimensional Bjork-Shiley valvular flow in an aorta . J. Biomech. Eng. ASME , 119 ( 1 ) : 45 – 51 .
  • Smith DB A generalized membrane shell approach for the computation of in vivo stress resultants in thin-walled anatomic structures PhD Thesis Univeristy of Pittsburgh 2001
  • Sripathi VC et al. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area Ann. Thorac. Surg. 77 3 844 851 2004
  • Taber , LA and Eggers , DW . 1996 . Theoretical study of stress-modulated growth in the aorta . J. Theor. Biol. , 180 ( 4 ) : 343 – 357 .
  • Thubrikar MJ et al. Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissection J. Med. Eng. Tech. 23 4 127 134 1999
  • Wang C A study of the aorta rupture under pressure loading PhD Thesis University of Virginia 2002

Arteries

  • Ballyk PD et al. Vessel wall stress and remodelling at a graft-artery junction 21st Canad. Med. Biol. Eng. Conf. 105 106 1997
  • Bursa J Modelling of stress–strain states in arteries as a pre-requisite for damage prediction Damage Fract. Mech. VII 487 495 2003 WIT Press
  • Carli , F and Martelli , M . 1999 . Mechanical model of net reinforced blood vessel . Adv. Eng. Software , 30 ( 9/11 ) : 673 – 681 .
  • Chen JS et al. Finite element procedures for large deformation analysis of arterial segments 1997 Bioeng. Conf. BED 35 465 466 1997 ASME
  • Farmakis TM et al. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis Curr. Med. Res. Opin. 20 5 587 596 2004
  • Gasser TC et al. A three-dimensional finite element model for arterial clamping J. Biomech. Eng. ASME 124 4 355 363 2002
  • Giannoglou GD et al. Coronary vessel wall thickening in relation to velocity and viscosity distribution Computers Cardiol. 27 683 686 2000 IEEE
  • Mosora F et al. Modelling the arterial wall by finite elements Arch. Int. Physiol. Bioch. Biophys. 101 3 185 191 1993
  • Mun JH et al. Residual stress in swine iliac arteries 1999 IEEE Eng. Med. Biol. Soc. Conf. 211 1999
  • Raghavan ML et al. Three-dimensional finite element analysis of residual stress in arteries Ann. Biomed. Eng. 32 2 257 263 2004
  • Simon BR Finite element models for arterial wall mechanics and transport Biomech. Syst. Tech. Appl. Leondes CT CRC Press 2001 5.1–36
  • Simon BR et al. Finite element models for arterial-wall mechanics J. Biomech. Eng. ASME 115 4 489 496 1993
  • Veress AI et al. Vascular mechanics of the coronary artery Z. Kardiol. 89 Supp 92 100 2000
  • Veress AI et al. Strain measurement in coronary arteries using intravascular ultrasound and deformable images J. Biomech. Eng. ASME 124 6 734 741 2002
  • Wolters BJBM et al. On the numerical analysis of coronary artery wall shear stress Computers Cardiol. 169 172 2001
  • Yamada H et al. Mathematical model of the artery focused on the behavior of smooth muscles in active state 1998 ASME Int. Mech. Eng. Cong. Expo. BED 39 61 62 1998 ASME
  • Yamada H et al. Finite element modeling and numerical simulation of the artery in active state JSME Int. J. Ser C 42 3 501 507 1999
  • Zhao C et al. Three-dimensional arterial vessel network: computational and finite element modeling Winter Ann. Meet. BED 26 123 125 1993 New Orleans, ASME

Others

  • Angelini ED et al. Comparison of segmentation methods for analysis of endocardial wall motion with real-time three-dimensional ultrasound Computers Cardiol. 29 609 612 2002
  • Christie GR et al. Modelling and visualising the heart Comput. Visual. Sci. 4 4 227 235 2002
  • Delfino A et al. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation J. Biomech. 30 8 777 786 1997
  • Devlaminck , V and Dubus , JP . 1996 . Nonrigid motion estimation for density images of a beating heart . Proc. SPIE , 2709 : 433 – 442 .
  • Hunter PJ et al. The integrated heart—a progress report on the cardiome project IEEE Eng. Med. Biol. Soc. Conf. 1196 1999
  • Jeremic A Nehorai A Estimating mechanical properties of the heart using dynamic modeling and magnetic resonance imaging Int. Conf. Acoust. Speech Signal Process 3775 3778 2000 Istanbul, IEEE
  • Kaazempur-Mofrad M et al. Role of simulation in understanding biological systems Comput. Struct. 81 8/11 715 726 2003
  • Luo XY et al. Geometrical stress-reducing factors in the anisotropic porcine heart valves J. Biomech. Eng. ASME 125 5 735 744 2003
  • McCulloch A et al. Large scale finite element analysis of the beating heart High Perf. Comp. Biomed. Res. Pilkington T CRC Press 1993 27 52
  • Minoura T et al. Computer simulation study of isomeric contraction of latissimus dorsi muscle used for cardiac assistance ASAIO J. 43 5 M781 M786 1997
  • Nelson GS et al. Compression of interventricular septum during right ventricular pressure loading Am. J. Physiol. Heart Circ. Physiol. 280 6 H2639 H2638 2001
  • Nelson GS et al. A 2D finite element model of the interventricular septum under normal and abnormal loading Comp. Meth. Biomech. Biomed. Eng. 4 4 307 322 2001
  • Perucchio R et al. Finite element analysis of the early embryonic chick heart during contraction 1995 Bioeng. Conf. BED 29 119 120 1995 Beever Creek, ASME
  • Rogers , JM and McCulloch , AD . 1996 . The effect of muscle fiber curvature on cardiac propagation . Med. Biol. Eng. Comput. , 34 ( S1 ) : 73 – 74 .
  • Sadeghi , R . 2000 . Exploring the heart with FEA . Mach. Des. Int. , 72 ( 7 ) : 67 – 69 .
  • Srinivasan V et al. A nonlinear finite element formulation for modeling volumetric growth Comp. Meth. Biomech. Biomed. Eng. 271 278 1998 Gordon and Breach
  • Stump DM et al. Circumferentially flexible vascular grafts J. Biomech. 31 8 705 711 1998
  • Taber , LA and Perucchio , R . 2000 . Modeling heart development . J. Elast. , 61 ( 1/3 ) : 165 – 197 .
  • Van Campen DH et al. Biomechanics of the heart muscle Europ. J. Mech., A/Solids 13 4 19 41 1994
  • Vincent F et al. An elasticity-based region model and its application to the estimation of the heart deformation in tagged MRI Int. Conf. Image Process. 629 632 2000
  • Wu HC et al. Stress analysis using anatomically realistic coronary tree Med. Phys. 30 11 2927 2936 2003
  • Zhao F et al. An integrated method to determine stress–strain relationship of beating heart 29th Ann. NE Bioeng. Conf. 273 274 2003 Newark, IEEE

Blood flow

Blood flow in arteries

  • Anayiotos AS et al. Numerical and experimental investigation of the flow acceleration region proximal to an orifice Ultrasound Med. Biol. 21 4 501 516 1995
  • Baaijens JP et al. Numerical analysis of steady generalized Newtonian blood flow in a 2D model of the carotid artery bifurcation Biorheology 30 1 63 74 1993
  • Borgersen SE Hajiloo A Simulation of flow characteristics through heart valves using 3-dimensional computational fluid dynamics 1994 Int. Mech. Eng. Cong. Expo. BED 28 119 1994 ASME
  • Cebral JR et al. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging Acad. Radiol. 9 11 1286 1299 2002
  • Chen , J and Lu , XY . 2004 . Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch . J. Biomech. , 37 ( 12 ) : 1899 – 1911 .
  • Chen J et al. Numerical analysis of the non-Newtonian blood flow in the nonplanar artery with bifurcation J. Hydrodyn. 16 3 248 253 2004
  • Dai G et al. The effects of external compression on venous blood flow and tissue deformation in the lower leg J. Biomech. Eng. ASME 121 6 557 564 1999
  • Das B et al. Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow Biorheology 35 1 69 87 1998
  • David T et al. Time-dependent blood flow in the aortic arch with and without bi-leaflet valve prostheses 1997 Bioeng. Conf. BED 35 1 2 1997 ASME
  • Deplano V et al. Two- and three-dimensional flow simulations in a bifurcation model Eur. J. Mech., B/Fluids 13 6 731 751 1994
  • Dierickx PW et al. Blood flow around hollow fibers Int. J. Artif. Organs 23 9 610 617 2000
  • Dorsaz PA et al. Cyclic velocity and acceleration of coronary arteries Computers Cardiol. 26 273 276 1999
  • Formaggia L et al. One-dimensional models for blood flow in arteries J. Eng. Math. 47 3/4 251 276 2003
  • Foutrakis GN et al. Finite element methods in the simulation and analysis of intracranial blood flow Neurolog. Res. 19 2 174 186 1997
  • Ge S et al. Quantification of mitral flow by Doppler colour flow mapping J. Am. Soc. Echocardiogr. 9 5 700 709 1996
  • Gijsen FJH et al. Influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model J. Biomech. 32 6 601 608 1999
  • Gijsen FJH et al. Influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degree curved tube J. Biomech. 32 7 705 713 1999
  • Gonzalez , E and Schoephoerster , R . 1996 . Simulation of three-dimensional systolic flow dynamics in a spherical ventricle: effects of abnormal wall motion . Ann. Biomed. Eng. , 24 ( 1 ) : 48 – 57 .
  • Hampton TG Cardiac ejection blood flow dynamics PhD Thesis Duke University 1993
  • Heys JJ et al. Modeling 3-D compliant blood flow with FOSLS Biomed. Sci. Instrument. 40 193 199 2004
  • Hoogstraten HW et al. Numerical simulation of blood flow in an artery with two successive bends J. Biomech. 29 8 1075 1083 1996
  • Hughes TJR et al. Finite element simulation of pulsatile flow through distensible blood vessels 4th World Cong. Comput. Mech. 1006 1998 Buenos Aires
  • Kaazempur Mofrad , M and Ethier , CR . 2001 . Mass transport in an anatomically realistic human right coronary artery . Ann. Biomed. Eng. , 29 ( 2 ) : 121 – 127 .
  • Karner G et al. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model Comp. Meth. Biomech. Biomed. Eng. 2 3 171 185 1999
  • Kinouchi Y et al. Theoretical analysis of magnetic field interactions with aortic blood flow Bioelectromagnetics 17 1 21 32 1996
  • Leuprecht , A and Perktold , K . 2001 . Computer simulation of non-Newtonian effects on blood flow in large arteries . Comp. Meth. Biomech. Biomed. Eng. , 4 ( 2 ) : 149 – 163 .
  • Leuprecht A et al. Combined CFD and MRI study of blood flow in a human ascending aorta model Biorheology 39 3/4 425 429 2002
  • Lu Y et al. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress Biorheology 39 3/4 431 436 2002
  • Lutostansky EM et al. Analysis of hemodynamic fluid phase mass transport in a separated flow region J. Biomech. Eng. ASME 125 2 189 196 2003
  • Mapara N et al. Numerical simulations of flow in flared sections of the human infrarenal aorta 14th South. Biomed. Eng. Conf. 34 37 1995 Shreveport, IEEE
  • Migliavacca F et al. Hemodynamics in the bidirectional cavopulmonary anastomosis: 3-D pulsatile numerical study 1995 Bioeng. Conf. BED 29 463 464 1995 Beever Creek, ASME
  • Milner JS et al. Hemodynamics of human carotid artery bifurcation: computational studies with models reconstructed from magnetic resonance imaging of normal subjects J. Vasc. Surg. 28 1 143 156 1998
  • Moore JA et al. Geometrical sensitivity in 3D arterial blood flow studies 1997 Bioeng. Conf. BED 35 339 340 1997 ASME
  • Moore JA et al. Computational blood flow modelling in real arteries: in vivo MRI models vs vascular casts 1997 Bioeng. Conf. BED 35 345 346 1997 ASME
  • Moore JA et al. Computational blood flow modeling: errors associated with reconstructing finite element models from magnetic resonance images J. Biomech. 31 2 179 184 1998
  • Myers JG et al. Factors influencing blood flow patterns in the human right coronary artery Ann. Biomed. Eng. 29 2 109 120 2001
  • Nakamura M et al. Numerical study on flow through the bifurcation of porcine renal artery Trans. Jpn. Soc. Mech. Eng. Ser B 63 608 1214 1220 1997
  • Nakamura M et al. Numerical study on the unsteady flows through the bifurcation of the porcine renal artery JSME Int. J. Ser B 41 2 262 269 1998
  • Nakamura M et al. Numerical study on three-dimensional unsteady blood flow through an artery with a small side branch JSME Int. J. Ser C 42 3 673 679 1999
  • Nobile , F and Veneziani , A . 1999 . Fluid structure interaction in blood flow problems . ZAMM , 79 ( S1 ) : 255 – 258 .
  • Noren D et al. Predicted wall shear rate gradients in T-type arteriolar bifurcations Biorheology 37 5/6 325 340 2000
  • Ong J et al. Converging 3D Stokes flow of two fluids in a T-type bifurcation J. Fluid Mech. 270 51 71 1994
  • Ong JG et al. Numerical simulation of blood flow in a venular bifurcation Winter Ann. Meet. BED 26 267 270 1993 New Orleans, ASME
  • Oshima M et al. Finite element simulation of blood flow in the cerebral artery Comp. Meth. Appl. Mech. Eng. 191 6/7 661 671 2001
  • Oung , H and Forsberg , F . 1996 . Doppler ultrasound simulation model for pulsatile flow with nonaxial components . Ultrason. Imag. , 18 ( 3 ) : 157 – 172 .
  • Owler BK et al. Changes in cerebral blood flow during cerebrospinal fluid pressure manipulation in patients with normal pressure hydrocephalus J. Cereb. Blood Flow Metab. 24 5 579 587 2004
  • Paz D et al. Numerical model and experimental investigation of blood flow through a bifurcation: interaction between an artery and small prosthesis ASAIO J. 43 4 326 333 1997
  • Perktold K Rappitsch G Numerical analysis of arterial wall mechanics and local blood flow phenomena Winter Ann. Meet. BED 26 127 130 1993 New Orleans, ASME
  • Perktold K Rappitsch G Mathematical modeling of local arterial flow and vessel mechanics Comp. Meth. Fluid-Struct. Inter. Crolet JM J. Wiley 1994 230 245
  • Perktold , K and Rappitsch , G . 1995 . Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model . J. Biomech. , 28 ( 7 ) : 845 – 856 .
  • Perktold K et al. Flow and wall shear stress in the human carotid artery bifurcation: computer simulation under anatomically realistic conditions 1994 Int. Mech. Eng. Cong. Expo. BED 28 437 438 1994 ASME
  • Perktold K et al. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model 1995 Bioeng. Conf. BED 29 405 406 1995 Beever Creek, ASME
  • Perktold K et al. Mathematical modelling of blood flow in arterial bifurcations ZAMM 76 S5 377 378 1996
  • Perktold K et al. Influence of non-Newtonian flow behavior on local hemodynamics ZAMM 79 S1 187 190 1999
  • Postelnicu A et al. Modelling the hemodynamics in the human cartoid artery bifurcation and computer simulation ITI'99 163 168 1999 Zagreb, Croatia
  • Pourtaheri N 1-D blood vessel modeling: vessel area and flow rate control Ann. Int. Conf. IEEE Eng. Med. Biol. 312 315 2003 Cancun, IEEE
  • Prosi M et al. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model J. Biomech. 37 11 1767 1775 2004
  • Qiao AK et al. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries Med. Eng. Phys. 26 7 545 552 2004
  • Qiu , Y and Tarbell , JM . 2000 . Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery . J. Biomech. Eng. ASME , 122 ( 1 ) : 77 – 85 .
  • Quarteroni A et al. Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls SIAM J. Numer. Anal. 39 5 1488 1511 2001
  • Ravensbergen J et al. Merging flows in an arterial confluence: the vertebro-basilar junction J. Fluid Mech. 304 119 141 1995
  • Ravensbergen J et al. Influence of the angle of confluence on the flow in a vertebro-basilar junction model J. Biomech. 29 3 281 299 1996
  • Redaelli A et al. Assignment of velocity profiles in finite element simulations of pulsatile flow in arteries Comp. Biol. Med. 27 3 233 247 1997
  • Regirer , SA and Shadrina , NK . 1999 . Movement of blood and interstitial fluid in bone tissue . Fluid Dyn. , 34 ( 5 ) : 614 – 631 .
  • Sadeghipour MS Hajari B Pulsatile blood flow in deformable vessels- non-Newtonian behavior 1995 Bioeng. Conf. BED 29 345 346 1995 Beever Creek, ASME
  • Schoephoerster R et al. Finite analytic model for left ventricular systolic flow dynamics J. Eng. Mech. ASCE 119 4 733 747 1993
  • Schulz S et al. Mathematical high time resolution model of the arterial system under extracorporeal circulation 1997 Bioeng. Conf. BED 35 431 1997 ASME
  • Sharma GC et al. Finite element Galerkin approach for a computational study of arterial flow Appl. Math. Mech. 22 9 1012 1018 2001
  • Sheu TWH et al. Finite element study of the blood flow in total cavopulmonary connection Computers Fluids 28 1 19 39 1999
  • Stangeby , DK and Ethier , CR . 2002 . Computational analysis of coupled blood-wall arterial LDL transport . J. Biomech. Eng. ASME , 124 ( 1 ) : 1 – 8 .
  • Steele BN et al. In vivo validation of a one-dimensional finite element method for predicting blood flow in cardiovascular bypass grafts IEEE Trans. Biomed. Eng. 50 6 649 656 2003
  • Sugihara-Seki , M and Skalak , R . 1997 . Asymmetric flows of spherical particles in a cylindrical tube . Biorheology , 34 ( 3 ) : 155 – 169 .
  • Tandon PN et al. Mathematical model for blood flow through an arterial bifurcation Int. J. Biomed. Comput. 35 4 309 325 1994
  • Tang D et al. Wall stress and strain analysis using a three-dimensional thick-wall model with fluid–structure interactions for blood flow in carotid arteries Comput. Struct. 72 1/3 341 356 1999
  • Taylor CA et al. Finite element modeling of blood flow in arteries Comp. Meth. Appl. Mech. Eng. 158 1/2 155 196 1998
  • Thiriet M et al. Shear thinning flow in a bend and in a planar symmetrical bifurcation. Application to the blood flow in large vessels J. Phys. III 4 529 542 1996
  • Vankan WJ et al. A finite element mixture model for hierarchical porous media Int. J. Num. Meth. Eng. 40 2 193 210 1997
  • Vankan WJ et al. Finite element analysis of blood flow through biological tissue Int. J. Eng. Sci. 35 4 375 385 1997
  • Vignon , IE and Taylor , CA . 2004 . Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries . Wave Motion , 39 ( 4 ) : 361 – 374 .
  • Wada S et al. Pulmonary blood flow model coupled with breathing dynamics Trans. Jpn. Soc. Mech. Eng. Ser A 61 586 1445 1452 1995
  • Xu XY et al. Coupled modeling of blood flow and arterial wall interactions by the finite element method Computers Cardiol. Murray A IEEE 1993 687 691
  • Xu XY et al. A problem-oriented approach to the numerical modelling of haemodynamic problems Adv. Eng. Software 28 6 365 377 1997
  • Younis HF et al. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation Ann. Biomed. Eng. 31 8 995 1006 2003
  • Younis HF et al. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variations Biomech. Model. Mechanobiol. 3 1 17 32 2004
  • Yue X et al. Simulation of branching blood flows on parallel computers Biomed. Sci. Instrument. 40 325 330 2004
  • Zeng D Finite element simulation of blood flow in a realistic model of a moving human right coronary artery PhD Thesis University of Toronto, Canada 2003
  • Zeng D et al. Effects of cardiac motion on right coronary artery hemodynamics Ann. Biomed. Eng. 31 4 420 429 2003
  • Zhang W et al. Effect of surrounding tissue on vessel fluid and solid mechanics J. Biomech. Eng. ASME 126 6 760 769 2004
  • Zhang YL et al. The vibration of an artery-like tube conveying pulsatile fluid flow Proc. Inst. Mech. Eng. Part H 216 1 1 11 2002
  • Zhao SZ et al. The numerical analysis of fluid–solid interactions for blood flow in arterial structures Part 2: Development of coupled fluid–solid algorithms Proc. Inst. Mech. Eng. Part H 212 4 241 252 1998
  • Zhao SZ et al. The numerical analysis of fluid-solid interactions for blood flow in arterial structures Part 1: A review of models for arterial wall behavior Proc. Inst. Mech. Eng. Part H 212 4 229 240 1998

Blood flow in stenotic arteries

  • Ang , KC and Mazumdar , J . 1995 . Mathematical modelling of triple arterial stenoses . Austral. Phys. Eng. Sci. Medic. , 18 ( 2 ) : 89 – 94 .
  • Bathe , M and Kamm , RD . 1999 . Fluid–structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery . J. Biomech. Eng. ASME , 121 ( 4 ) : 361 – 369 .
  • Cebral JR et al. Image-based finite element modeling of hemodynamics in stenosed carotid artery Proc. SPIE 4683 297 304 2002
  • Cheng , T and Deville , M . 1996 . Pulsatile flow of non-Newtonian fluids through arterial stenoses . J. Biomech. , 29 ( 7 ) : 899 – 908 .
  • Cloutier G et al. Assessment of arterial stenosis in a flow model with power Doppler aniography: accuracy and observations on blood echogenecity Ultrasound Med. Biol. 26 9 1489 1501 2000
  • Ghalichi , F and Deng , X . 2003 . Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number . Biorheology , 40 ( 6 ) : 637 – 654 .
  • Haga JH et al. Transient platelet deformation in thrombosing coronary artery stenoses: a preliminary analysis 1997 Bioeng. Conf. BED 35 531 532 1997 ASME
  • Natarajan , S and Mokhtarzadeh-Degha . 2000 . A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stended arteries . Med. Eng. Phys. , 22 ( 8 ) : 555 – 566 .
  • Ng , EYK and Siauw , WL . 2002 . Modelling of fluid–wall interactions for viscous flow in a stenotic elastic artery . Progr. Comput. Fluid Dyn. , 2 ( 1 ) : 33 – 44 .
  • Palmen DEM et al. Experimental and numerical analysis of the flow in stenosed carotid artery bifurcation model Winter Ann. Meet. BED 26 75 78 1993 New Orleans, ASME
  • Shim EB Kamm RD Finite element analysis of blood flow via a shunt from the left ventricle to the distal segment of a stenosed coronary artery Computers Cardiol. 28 377 380 2001 IEEE
  • Shim EB et al. Numerical analysis of blood flow through a stenosed artery using a coupled multiscale simulation method Computers Cardiol. 27 219 222 2000 IEEE
  • Sud VK et al. Mathematical modelling of the human cardiovascular system in the presence of stenosis Phys. Med. Biol. 38 3 369 378 1993
  • Tandon , PN and Rana , UV . 1995 . A new model for blood flow through an artery with axisymmetric stenosis . Int. J. Biomed. Comput. , 38 ( 3 ) : 257 – 267 .
  • Tandon PN Rana UVS A model for blood flow through an artery with axisymmetric stenosis 3rd World Cong. Comput. Mech. R7 2 1994 Chiba, Japan
  • Tandon PN et al. A model for blood flow through a stenotic tube Int. J. Biomed. Comput. 32 61 78 1993
  • Tang D et al. A 3-D thin-wall model with fluid-structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses Comput. Struct. 72 1/3 357 377 1999
  • Tasciyan TA et al. Comparison of 2D pulsatile hemodynamic analyses within a stenosed carotid arterial bifurcation and its normal counterpart Proc. Fluid Eng. Conf. FED 157 221 228 1993 Washington, ASME
  • Yang C et al. A multi-physics growth model with fluid–structure interactions for blood flow and re-stenosis in rat vein grafts Comput. Struct. 81 8/11 1041 1058 2003
  • Yim PJ et al. Hemodynamic significance of renal artery stenoses from magnetic resonance imaging IEEE Int. Symp. Biomed. Imaging 951 954 2002 Washington, IEEE
  • Yim PJ et al. Measurement of pressure drops at arterial stenoses from MR imaging 24th Ann. Int. Conf. Eng. Medic. Biol. Soc. 1029 1030 2002 Houston, IEEE

Blood pressure/flow imaging

  • Cristalli , C and Ursino , M . 1995 . Influence of arm soft tissue on non-invasive blood pressure measurements: an experimental and mathematical study . J. Inter. Measur. Confed. , 14 ( 3/4 ) : 229 – 240 .
  • Cristalli C et al. FEM simulation and experimental evaluation of the squeezing phenomenon in Riva-Rocci blood pressure measurement Computers Cardiol. 655 658 1993 London, IEEE
  • Cristalli C et al. Studies on soft tissue pressure distribution in the arm during non-invasive blood pressure measurement Int. Conf. IEEE Eng. Med. Biol. Soc. 41 42 1994 Baltimore
  • Ferrara , KW and Algazi , VR . 1994 . Theoretical and experimental analysis of the received signal from disturbed blood flow . IEEE Trans. Ultrason. Ferroelectr. , 41 ( 2 ) : 172 – 184 .
  • Ferrara KW et al. Parameter mapping for the detection of disturbed blood flow Ultrasound Med. Biol. 21 4 517 525 1995
  • Glor FP et al. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow Ann. Biomed. Eng. 31 2 142 151 2003
  • Gopakumaran B et al. New technique to measure and track blood resistivity in intracardiac impedance volumetry J. Clin. Monitor. 13 6 363 371 1997
  • Hitt , DL and Lowe , ML . 1997 . Confocal imaging and numerical simulations of converging flows in artificial microvessels . Proc. SPIE , 2978 : 145 – 154 .
  • Lin , YH and Shung , KK . 1999 . Ultrasonic backscattering from porcine whole blood of varying hematocrit and shear rate under pulsatile flow . Ultrasound Med. Biol. , 25 ( 7 ) : 1151 – 1158 .
  • Lu W et al. Suitable location and optimum bladder width for the occluding cuff used for indirect arterial blood pressure measurements at the wrist Front. Med. Biol. Eng. 9 1 9 29 1999
  • Lu W et al. Indirect arterial blood pressure measurement at the wrist using a pad-type square cuff and volume-oscillometric method Front. Med. Biol. Eng. 11 3 207 219 2001
  • Oshima M et al. Biosimulation and visualization: effect of cerebrovascular geometry on hemodynamics Ann. NY Acad. Sci. 972 337 344 2002
  • Paley M et al. Stable periodic vortex shedding studied using computational fluid dynamics, laser sheet flow visualization, and MR imaging Magnet. Reson. Imag. 18 4 473 478 2000
  • Parker D et al. Imaged based 3D solid model construction of human arteries for blood flow simulations IEEE Eng. Medic. Biol. Soc. 20 998 1001 1998 IEEE
  • Redaelli , A and Montevecchi , FM . 1996 . Computational evaluation of intraventricular pressure gradients based on a fluid-structure approach . J. Biomech. Eng. ASME , 118 ( 4 ) : 529 – 537 .
  • Redaelli , A and Montevecchi , FM . 1998 . Intraventricular pressure drop and aortic blood acceleration as indices of cardiac inotropy: a comparison with the first derivative of aortic press . Med. Eng. Phys. , 20 ( 4 ) : 231 – 241 .
  • Steinman DA Advances in computational imaging of blood flow 1998 ASME Int. Mech. Eng. Cong. Expo. BED 39 125 126 1998 ASME
  • Steinman , DA . 2002 . Image-based computational fluid dynamics modeling in realistic arterial geometries . Ann. Biomed. Eng. , 30 ( 4 ) : 483 – 497 .
  • Sud VK et al. Effects of lower-body negative pressure on blood flow with application to the human cardiovascular system Med. Biol. Eng. Comput. 31 6 569 575 1993
  • Thomas JB et al. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation Ann. Biomed. Eng. 31 2 132 141 2003
  • Vilkomerson D et al. Clinical blood flow measurements using diffraction-grating transducers 1998 IEEE Ultrason. Symp. 1501 1508 1998

Mechanics of blood cells

  • Alevriadou BR et al. Effect of shear stress on 8*6RB plus efflux from calf pulmonary artery endothelial cells Ann. Biomed. Eng. 21 1 1 7 1993
  • Berger RL et al. Simulation of hemoglobin kinetics using finite element numerical methods Methods Enzymol 232 517 558 1994
  • Black JF Barton JK Time-domain optical and thermal properties of blood undergoing laser photocoagulation Laser–Tissue Interact. XII, SPIE 341 354 2001
  • Dong C et al. Mechanics of white blood cell and endothelium adhesion 1995 Bioeng. Conf. 29 459 460 1995 Beever Creek, ASME
  • Gijsen FJH et al. Wall shear stress in backward-facing step flow of a red blood cell suspension Biorheology 35 4/5 263 279 1998
  • Hansen JC Hoger A Elastic network model based on the structure of the red blood cell membrane skeleton 1995 Bioeng. Conf. 29 397 398 1995 Beever Creek, ASME
  • Hansen JC et al. An elastic network model based on the structure of the red blood cell membrane skeleton Biophys. J. 70 1 146 166 1996
  • Hansen JC et al. Influence of network topology on the elasticity of the red blood cell membrane skeleton Biophys. J. 72 5 2369 2381 1997
  • Hansen JC et al. Spectrin properties and the elasticity of the red blood cell membrane skeleton Biorheology 34 4/5 327 348 1997
  • Hsia CC et al. Critique of conceptual basis of diffusing capacity estimates: a finite element analysis J. Appl. Physiol. 79 3 1039 1047 1995
  • Hsia CC et al. Red cell distortion and conceptual basis of diffusing capacity estimates: finite element analysis J. Appl. Physiol. 83 4 1397 1404 1997
  • Hsia CC et al. Red cell distribution and the recruitment of pulmonary diffusing capacity J. Appl. Physiol. 86 5 1460 1467 1999
  • Nabors LK et al. Red blood cell orientation in pulmonary capillaries and its effect on gas diffusion J. Appl. Physiol. 94 4 1634 1640 2003
  • Nakamura , M and Hokari , M . 1995 . Mechanical investigation on the shape of red blood cells . Trans. Jpn. Soc. Mech. Eng. Ser B , 61 ( 582 ) : 587 – 591 .
  • Ohashi T et al. Structural optimization analysis of endothelial cell remodeling to fluid flow Ann. Int. Conf. IEEE Eng. Med. Biol. 366 2002 Houston, IEEE
  • Pham P et al. Development of a linear transient model for simulation of isolated cardiac cells Eur. Phys. J., Appl. Phys. 12 3 217 222 2000
  • Sharma GC et al. A mathematical model for concentration of blood affecting erythrocyte sedimentation Comp. Biol. Med. 26 1 1 7 1996
  • Tambasco , M and Steinman , DA . 2002 . On assessing the quality of particle tracking through computational fluid dynamic models . J. Biomech. Eng. ASME , 124 ( 2 ) : 166 – 175 .
  • Wang , CH and Popel , AS . 1993 . Effect of red blood cell shape on oxygen transport in capillaries . Math. Biosci. , 116 ( 1 ) : 89 – 110 .
  • Wang S et al. Effects of flow on vascular smooth muscle cells 1999 Bioeng. Conf. BED 42 621 622 1999 ASME

Other flow problems

  • Burrowes KS et al. Modeling RBC and neutrophil distribution through an anatomically based pulmonary capillary network Ann. Biomed. Eng. 32 4 585 595 2004
  • De Wachter , D and Verdonck , P . 2002 . Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas . Artif. Organs , 26 ( 7 ) : 576 – 582 .
  • Ene-Iordache B et al. Computational fluid dynamics of a vascular access case for hemodialysis J. Biomech. Eng. ASME 123 3 284 292 2001
  • Grigioni M et al. Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow J. Biomech. 35 12 1599 1612 2002
  • Gutierrez-Croft G et al. Blood vessel network generation for thermal modeling of living tissue 1998 ASME Int. Mech. Eng. Cong. Expo. HTD 362 1 6 1998 ASME
  • Hodgson , L and Tarbell , JM . 2002 . Solute transport to the endothelial intercellular cleft: the effect of wall shear stress . Ann. Biomed. Eng. , 30 ( 7 ) : 936 – 945 .
  • Karner , G and Perktold , K . 1998 . The influence of flow on the concentration of platelet active substances in the vicinity of mural microthrombi . Comp. Meth. Biomech. Biomed. Eng. , 1 ( 4 ) : 285 – 301 .
  • Karner , G and Perktold , K . 2000 . Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study . J. Biomech. , 33 ( 6 ) : 709 – 715 .
  • Kim BM et al. Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue IEEE J. Sel. Top. Quant. Electr. 2 4 922 933 1996
  • Mazhari R et al. Regional myocardial perfusion and mechanics: a model-based method of analysis Ann. Biomed. Eng. 26 5 743 755 1998
  • McCarthy MR et al. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carrier Biophys. Chem. 92 1/2 103 117 2001
  • Migliavacca F et al. Computational model of fluid dynamics in systemic-to-pulmonary shunts J. Biomech. 33 5 549 557 2000
  • Migliavacca F et al. Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit Med. Eng. Phys. 21 3 187 193 1999
  • Moore JA et al. Numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses J. Biomech. Eng. ASME 121 3 265 272 1999
  • Ono S et al. Effect of coronary artery reperfusion on transmural myocardial remodeling in dogs Circulation 91 4 1143 1153 1995
  • Pal , DS and Pal , S . 1993 . Effects of blood flow, curved boundary and environmental conditions on temperature distribution in a 2-D model of human skin and tissues . J. Math. Biol. , 32 ( 1 ) : 17 – 32 .
  • Perktold , K and Rappitsch , G . 1995 . Mathematical modeling of arterial blood flow and correlation to atherosclerosis . Tech. Health Care , 3 ( 3 ) : 139 – 151 .
  • Qiu , Y and Tarbell , JM . 2000 . Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery . Ann. Biomed. Eng. , 28 ( 1 ) : 26 – 38 .
  • Quarteroni A et al. A domain decomposition method for advection-diffusion processes with application to blood solutes SIAM J. Sci. Comp. 23 6 1960 1981 2002
  • Rappitsch G Perktold K Computer simulation of convective diffusion phenomena in large arteries 1994 Int. Mech. Eng. Cong. Expo. BED 28 391 392 1994 ASME
  • Rappitsch , G and Perktold , K . 1995 . Simulation konvektionsdominanter Diffusionen in Arteriesegmenten . ZAMM , 75 : S361 – S362 .
  • Rappitsch , G and Perktold , K . 1996 . Computer simulation of convective diffusion processes in large arteries . J. Biomech. , 29 ( 2 ) : 207 – 215 .
  • Rappitsch , G and Perktold , K . 1996 . Numerical simulation of pulsatile convective diffusion in large arteries . ZAMM , 76 ( S4 ) : 49 – 52 .
  • Rappitsch , G and Perktold , K . 1996 . Pulsatile albumin transport in large arteries: a numerical simulation study . J. Biomech. Eng. ASME , 118 ( 4 ) : 511 – 519 .
  • Shi X et al. Experimental investigation and finite element simulation of streaming in blood in cylindrical models 2000 IEEE Ultrason. Symp. 1509 1512 2000
  • Shi X et al. Quantitative investigation of acoustic streaming in blood J. Acoust. Soc. Am. 111 2 1110 1121 2002
  • Shim , EB and Chang , KS . 1997 . Numerical analysis of three-dimensional Bjork-Shiley valvular flow in an aorta . J. Biomech. Eng. ASME , 119 ( 1 ) : 45 – 51 .
  • Shim EB et al. Numerical analysis of the three-dimensional blood flow in the Korean artificial heart Artif. Organs 27 1 49 60 2003
  • Steinman DA Numerical analysis of flow in a 2D distensible model of an end-to-side anastomosis PhD Thesis University of Toronto, Canada 1993
  • Valvano JW et al. Analysis of the Weinbaum-Jiji model of blood flow in the canine kidney cortex for self-heated thermistors J. Biomech. Eng. ASME 116 2 201 207 1994
  • Vankan WJ et al. Poroelasticity of saturated solids with an application to blood perfusion Int. J. Eng. Sci. 34 9 1019 1031 1996
  • Vankan WJ et al. Finite element simulation of blood perfusion in muscle tissue during compression and sustained contraction Am. J. Physiol. 273 3 1587 1594 1997
  • Whithead KK et al. Computational modeling of fluid dynamics in aortopulmonary shunts: comparison to in vitro studies 11th Conf. Eng. Mech. 334 1996 Fort Lauderdale, FL, ASCE
  • Zhong Z et al. A micromechanical theory of flow in pulmonary alveolar sheet Comput. Model. Eng. Sci. 3 1 77 86 2002

Artificial components

  • Antaki JF et al. Computational flow optimization of rotary blood pump components Artif. Organs 19 7 608 615 1995
  • Arpesella G et al. New bileaflet bioprosthesis: early and mid term results J. Heart Valve Disease 3 4 445 450 1994
  • Atherton , MA and Bates , RA . 2004 . Robust optimization of cardiovascular stents: a comparison of methods . Eng. Optim. , 36 ( 2 ) : 207 – 217 .
  • Auricchio F et al. Finite element analysis of the interaction between stent and a stenotic artery 5th US Nat. Cong. Comput. Mech. 251 252 1999 Boulder
  • Baxter , WW and McCulloch , AD . 2001 . In vivo finite element model-based image analysis of pacemaker lead mechanics . Med. Image Anal. , 5 ( 4 ) : 255 – 270 .
  • Berry JL et al. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis J. Vasc. Interv. Radiol. 13 1 97 105 2002
  • Black , MM and Drury , PJ . 1994 . Mechanical and other problems of artificial valves . Curr. Top. Pathol. , 86 : 127 – 159 .
  • Borgersen SE et al. Calculated bending stresses in pacemaker leads using nonlinear finite element analysis 1994 Int. Mech. Eng. Cong. Expo. BED 28 143 1994 ASME
  • Burriesci G et al. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves J. Med. Eng. Tech. 23 6 203 215 1999
  • Cacciola G et al. Development of a reinforced polymer heart valve prosthesis 1997 Bioeng. Conf. BED 35 435 436 1997 ASME
  • Cacciola G et al. A three dimensional mechanical analysis of a stentless fiber reinforced aortic valve prosthesis J. Biomech. 33 5 521 530 2000
  • Carli , F and Martelli , M . 1999 . Mechanical model of net reinforced blood vessel . Adv. Eng. Software , 30 ( 9/11 ) : 673 – 681 .
  • Cerrolaza M Numerical methods in bioengineering design: applications in traumatology and cardiology 4th World Cong. Comput. Mech. 1000 1998 Buenos Aires
  • Cerrolaza M et al. A comparison of the hydrodynamical behaviour of three heart aortic prostheses by numerical methods J. Med. Eng. Tech. 20 6 219 228 1996
  • Charonko JJ et al. A numerical and experimental analysis of cardiovascular stent design considerations ASME Int. Mech. Eng. Cong. BED 55 63 64 2003 ASME
  • Chen DP et al. Transient analysis of artificial mechanical valve: blood interaction Appl. Math. Mech. 16 5 437 442 1995
  • Chesler NC Kamm RD Systematic method for design and evaluation of a cardiac pumping chamber 1994 Int. Mech. Eng. Cong. Expo. BED 28 401 402 1994 ASME
  • Chew GG et al. Non-linear finite element modelling of porcine bioprosthetic valves Eng. Failure Anal. 1 3 231 242 1994
  • Chia R Finite element analysis of vibrations of the Bjork Shiley convexo-concave heart valve 7th Symp. Comp. Based Med. Syst. 48 52 1994 Winston, IEEE
  • Chua SND et al. Finite element simulation of stent expansion J. Mater. Process. Technol. 120 1/3 335 340 2002
  • Chua SND et al. Effects of varying slotted tube (stent) geometry on its expansion behaviour using finite element method J. Mater. Process. Technol. 155–156 1764 1771 2004
  • Chua SND et al. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion J. Mater. Process. Technol. 155–156 1772 1779 2004
  • Chua SND et al. Finite element simulation of stent and balloon interaction J. Mater. Process. Technol. 143–144 591 597 2003
  • Clift SE Fisher J Finite element analysis of a new design of synthetic leaflet heart valve 5th World Biomater. Cong. 247 1996 Toronto
  • Clift , SE and Fisher , J . 1996 . Finite element stress analysis of a new design of synthetic leaflet heart valve . J. Eng. Med. , 210 ( H4 ) : 267 – 272 .
  • Da Costa Teixeira P et al. Mechanical behavior and stability of the internal membrane of the InCor ventricular assist device Artif. Organs 25 11 912 921 2001
  • De Hart J et al. Three-dimensional analysis of a fibre-reinforced aortic valve prosthesis J. Biomech. 31 7 629 638 1998
  • De Hart J et al. A two-dimensional fluid–structure interaction model of the aortic valve J. Biomech. 33 9 1079 1088 2000
  • Di Martino E et al. The computational approach applied to the design and structural verification of a trileaflet polymeric heart valve Adv. Eng. Software 28 6 341 346 1997
  • Donahue TLH et al. Finite element analysis of stresses developed in blood sacs of a pusherplate blood pump Comp. Meth. Biomech. Biomed. Eng. 6 1 7 16 2003
  • Dumoulin , C and Cochelin , B . 2000 . Mechanical behaviour modelling of balloon-expandable stents . J. Biomech. , 33 ( 11 ) : 1461 – 1470 .
  • Etave F et al. Mechanical properties of coronary stents determined by using finite element analysis J. Biomech. 34 8 1065 1075 2001
  • Gilpin CB et al. Finite element analysis of indentation tests on pyrolytic carbon J. Heart Valve Dis. 5 Supp 72 78 1996
  • Grabow N et al. The impact of material characteristics on the mechanical properties of a poly(l-lactide) coronary stent Biomedizin. Technik 47 Supp 503 505 2002
  • Gross , JM and Christie , GW . 1993 . A non-invasive technique to quantify in vitro bioprosthetic valvular coaptation . ASAIO J. , 39 ( 3 ) : 392 – 397 .
  • Halili RB et al. Measuring the true pressure field near the inflow region of heart valve prostheses 1998 ASME Int. Mech. Eng. Cong. Expo. BED 39 67 69 1998 ASME
  • Hanlon JG et al. Geometric optimization of a tissue pattern for semilunar valve reconstruction J. Heart Valve Dis. 8 6 609 613 1999
  • Hintner , M and Stur , S . 2002 . Finite element simulation of the dilatation of coronary vascular implants . Biomedizin. Technik , 47 ( Supp ) : 768 – 769 .
  • Hsu , CH . 2003 . Flow study on a newly developed impeller for a left ventricular assist device . J Artif. Organs , 6 ( 2 ) : 92 – 100 .
  • Iwasaki K et al. The improved jellyfish valve: durability enhancement with sufficient blood compatibility ASAIO J. 48 5 532 537 2002
  • Iwasaki K et al. Implications for the establishment of accelerated fatigue test protocols for prosthetic heart valves Artif. Organs 26 5 420 429 2002
  • Iwasaki K et al. Design improvement of the jellyfish valve for long-term use in artificial hearts Int. J. Artif. Organs 24 7 463 469 2001
  • Iyengar AKS et al. Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection Ann. Biomed. Eng. 29 11 963 973 2001
  • Kathuria , YP . 2004 . An overview on laser microfabrication of biocompatible metallic stent for medical therapy . Proc. SPIE , 5399 : 234 – 244 .
  • Kerckhoffs RCP Depolarization wave and mechanics in the paced heart: model and experiment PhD Thesis Tech. Univ. Eindhoven, Netherlands 2003
  • Kerckhoffs RCP et al. Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study Ann. Biomed. Eng. 31 5 536 547 2003
  • Kerh , T . 1996 . Evaluation of flow patterns in the vicinity of a mechanical heart valve structure . Chin. J. Med. Biol. Eng. , 16 ( 2 ) : 136 – 148 .
  • Kikuta Y et al. Stress analysis by FEM of a central opening bi-leaflet prosthetic heart valve Bull. Fac. Eng. Hokkaido Univ. 164 89 96 1993
  • Krucinski S et al. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents J. Biomech. 26 8 929 943 1993
  • Kunzelman KS et al. Finite element analysis of mitral valve pathology J. Long-Term Effects Med. Implants 3 3 161 179 1993
  • Long J et al. A novel method for the in vivo detection of single leg separation failures in prosthetic heart valves Proc. SPIE 4702 357 363 2002
  • Makhijani VB et al. Three-dimensional coupled fluid–structure simulation of pericardial bioprosthetic aortic valve function ASAIO J. 43 5 M387 M392 1997
  • Matsuda K et al. Radial-type self-bearing motor for nonpulsatile-type artificial heart JSME Int. J. Ser C 43 4 941 948 2000
  • McGarry JP et al. Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling Comput. Mater. Sci. 31 3/4 421 438 2004
  • McMeeking RM et al. Structural analysis of the Bjork-Shiley Delrin heart valve occluder J. Heart Valve Dis. 5 S2 229 237 1996
  • Migliavacca F et al. Mechanical behavior of coronary stents investigated through the finite element method J. Biomech. 35 6 803 811 2002
  • Migliavacca F et al. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall Biomech. Model. Mechanobiol. 2 4 205 217 2004
  • Miller PJ et al. Design history of the novacor left ventricular assist system 1994 Int. Mech. Eng. Cong. Expo. BED 28 25 26 1994 ASME
  • Mitamura Y et al. A durable, non power consumptive, simple seal for rotary blood pumps ASAIO J. 47 4 392 396 2001
  • Montevecchi FM et al. Preliminary design and optimization of an ECC blood pump by means of a parametric approach Artif. Organs 19 7 685 690 1995
  • Murphy BP et al. The stress–strain behavior of coronary stent struts is size dependent Ann. Biomed. Eng. 31 6 686 691 2003
  • Okada Y et al. Axial type self-bearing motor for axial flow blood pump Artif. Organs 27 10 887 891 2003
  • Osada T et al. The design of linear oscillatory actuator for artificial heart with the blood pump Symp. Power Electron. Electr. Drives A3/25-0 1998 Napoli
  • Paszenda Z et al. Biomechanical characteristics of the stent-coronary vessel system Acta Bioeng. Biomech. 4 1 81 89 2002
  • Patterson EA et al. Comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle J. Med. Eng. Tech. 20 3 95 108 1996
  • Paz D et al. Numerical model and experimental investigation of blood flow through a bifurcation: interaction between an artery and small prosthesis ASAIO J. 43 4 326 333 1997
  • Petrini L et al. Numerical investigation of the intravascular coronary stent flexibility J. Biomech. 37 4 495 501 2004
  • Ryder K Simulation of housing separation in a rotable mechanical prosthetic heart valve ASME Int. Mech. Eng. Cong. Expo. BED 36 51 52 1997 ASME
  • Sacks MS et al. Real time deformation of the bioprosthetic heart valve 1999 IEEE Eng. Medic. Biol. Soc. Conf. 173 1999
  • Savage P et al. Coronary stent strut size dependent stress–strain response investigated using micromechanical finite element models Ann. Biomed. Eng. 32 2 202 211 2004
  • Schlun M et al. Design strategy for balloon-expandable stents made of biodegradable polymers using finite element analysis Biomedizin. Technik 47 Supp 831 834 2002
  • Schreyer AG et al. 3D modeling of the chest in patients with implanted cardiac defibrillator for further bioelectrical simulation CAR '98, 12th Int. Symp. Exhib. 194 198 1998 Elsevier
  • Shandas R et al. A general method for estimating deformation and forces imposed in vivo on bioprosthetic heart valves with flexible annuli J. Heart Valve Dis. 10 4 495 504 2001
  • Shim EB et al. Numerical analysis of the three-dimensional blood flow in the Korean artificial heart Artif. Organs 27 1 49 60 2003
  • Smith DB et al. High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves J. Heart Valve Dis. 6 4 424 432 1997
  • Stijnen JMA et al. Influence of prosthetic mitral valve orientation on left ventricular flow Computers Cardiol. 28 173 175 2001 IEEE
  • Stoytchev S et al. Optimal design of arterial bypass prostheses diameter J. Mech. Med. Biol. 1 2 107 122 2001
  • Tan LB et al. A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation Int. J. Cardiol. 78 1 51 67 2001
  • Teoh SH et al. In vitro strain measurement of a mechanical heart valve in a pulse simulator ASAIO J. 39 4 929 932 1993
  • Thornton MA et al. Three-dimensional stress analysis of polypropylene leaflets for prosthetic heart valves Med. Eng. Phys. 19 6 588 597 1997
  • Vesely I et al. Optimal mounting frame to reduce flexural stresses of bioprosthetic heart valves ASAIO J. 40 2 199 205 1994
  • Wan S et al. Novel bearingless centrifugal blood pump 4th IEEE Int. Conf. Power Electron. Drive 743 748 2001
  • Webb DC et al. A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation 5th US Nat. Cong. Comput. Mech 250 251 1999 Boulder
  • Whirley RG Computational modeling of vascular stents 5th US Nat. Comput. Mech. 413 1999 Boulder
  • Whitcher , FD . 1997 . Simulation of in vivo loading conditions of nitinol vascular stent structures . Comput. Struct. , 64 ( 5/6 ) : 1005 – 1011 .
  • Yamaguchi M et al. Performance comparison of two linear motor-driven totally artificial hearts IEEE Trans. J. Magn. Jpn. 9 2 166 173 1994
  • Yuan Q et al. Dynamic impact stress analysis of a bileaflet mechanical heart valve J. Heart Valve Dis. 12 1 102 109 2003
  • Zhang J Zhou S ALE finite element analysis of the opening and closing process of the bi-leaflet artificial mechanical heart valve 1st Int. Cong. Eng. Comput. Comp. Simul. 483 488 1995 Changsha
  • Zidi , M and Cheref , M . 2003 . Mechanical analysis of a prototype of small diameter vascular prosthesis: numerical simulations . Comp. Biol. Med. , 33 ( 1 ) : 65 – 75 .

Cardiac diseases, examination, surgery

Examination-ectrocardiography, echocardiography, etc

  • Baroni M et al. Left ventricular shape reconstruction and description in 3D with application to self-referring echocardiographic reports 1995 Conf. Computers Cardiol. 745 748 1995 Vienna
  • Bonovas PM et al. A realistic 3-D FEM human torso model for electrocardiography applications Int. Symp. Trans. Black Sea Reg. Appl. EM 33 2000 Xanthi, IEEE
  • Bourgault Y et al. Simulation of electrophysiological waves with an unstructured finite element method Math. Modell. Numer. Anal. 37 4 649 661 2003
  • Bradley CP et al. Effects of material properties and geometry on electrocardiographic forward simulations Ann. Biomed. Eng. 28 7 721 741 2000
  • Bu G et al. The maximum a posteriori approach to the inverse problem of electrocardiography Biomed. Sci. Instrument. 39 158 162 2003
  • Buist M et al. A deformable finite element derived finite difference method for cardiac activation problems Ann. Biomed. Eng. 31 5 577 588 2003
  • Buist , ML and Pullan , AJ . 2003 . The effect of torso on epicardial and body surface potentials: a modeling study . IEEE Trans. Biomed. Eng. , 50 ( 7 ) : 816 – 824 .
  • Cabelka S et al. Three-dimensional finite element computer model of the forward problem of electrocardiology Bratisl. Lek. Listy 97 9 550 552 1996
  • Coppini G et al. Recovery of the 3-D shape of the left ventricle from echocardiographic images IEEE Trans. Med. Imaging 14 2 301 317 1995
  • Czapski P et al. Computer simulations of cardiac magnetic fields with nonhomogeneous finite element model 15th Ann. Int. Conf. IEEE Eng. Med. 897 898 1993 San Diego
  • Czapski P et al. On the contribution of volume currents to the total magnetic field resulting from the heart excitation process: a simulation study IEEE Trans. Biomed. Eng. 43 1 95 104 1996
  • Czapski P et al. Effects of tissue conductivity variations on the cardiac magnetic fields simulated with a realistic heart-torso model Phys. Med. Biol. 41 8 1247 1263 1996
  • Czerwinska A et al. Simulation of cardiac electrical field for aid the non-invasive diagnosis 22nd Ann. Int. Conf. IEEE Eng. Med. Biol. 2914 2916 2000
  • Dauer W et al. Modeling intracardiac potentials using the finite element method Biomedizin. Technik 43 Suppl 320 321 1998
  • DeGroff CG et al. Evaluating isovelocity surface area flow convergence method with finite element modeling J. Am. Soc. Echocardiogr. 11 8 809 818 1998
  • DeGroff CG et al. Insight into the effect of aortic compliance on Doppler diastolic flow patterns seen in coarctation of the aorta: a numeric study J. Am. Soc. Echocardiogr. 16 2 162 169 2003
  • Devlaminck V Dubus JP Estimation of velocity vectors with a finite element method for echocardiographic images IEEE Eng. Med. Biol. 17th Ann. Conf. 127 128 1995 Montreal, IEEE
  • Devlaminick V Dubus JP Estimation of velocity vectors with a finite element method for echocardiographic images 21st Canad. Med. Biol. Eng. Conf. 127 128 1997
  • Franzone , PC and Pavarino , LF . 2004 . A parallel solver for reaction–diffusion systems in computational electrocardiology . Math. Models Meth. Appl. Sci. , 14 ( 6 ) : 883 – 911 .
  • Gopakamaran B et al. Simulation of body surface potentials using a finite element heart torso model Summer Comp. Simul. Conf. 150 155 1998 SCS, San Diego
  • Gotteiner NL et al. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction Am. J. Cardiac Imaging 9 3 185 194 1995
  • Gulrajani , RM . 1998 . Forward and inverse problems of electrocardiography . IEEE Eng. Med. Biol. , 17 ( 5 ) : 84 – 100 .
  • Han GJ et al. Application of finite element analysis with optimization to assess the in vivo non-linear myocardial material properties using echocardiograph Med. Biol. Eng. Comput. 31 5 459 467 1993
  • Hyttinen J et al. Application of the visible human man data to calculate the sensitivity of ECG leads to detect myocardial sources Med. Biol. Eng. Comput. 34 S1 85 86 1996
  • Khoury DS Use of current density in the regularization of the inverse problem of electrocardiography Int. Conf. IEEE Eng. Med. Biol. Soc. 133 134 1994 Baltimore
  • Klepfer RN et al. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite element study IEEE Trans. Biomed. Eng. 44 8 706 719 1997
  • Klepfer RN et al. Effects of inhomogeneities and anisotropies on electrocardiographic fields: a three-dimensional finite element study IEEE Eng. Med. Biol. 17th Ann. Conf. 233 234 1995 Montreal, IEEE
  • Konofagou EE et al. Cardiac elastography: detecting pathological changes in myocardium tissues Proc. SPIE 5035 201 210 2003
  • Kucera , D and Martin , RW . 1997 . Segmentation of sequences of echocardiographic images using a simplified 3D active contour model with region-based forces . Comp. Med. Imag. Graph. , 21 ( 1 ) : 1 – 21 .
  • Lines GT et al. Modeling the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso Comput. Visual Sci. 5 4 195 213 2002
  • Mosher JC et al. EEG and MEG: forward solutions for inverse methods IEEE Trans. Biomed. Eng. 46 3 245 259 1999
  • Muller , M and Meyer-Waarden , K . 1997 . Calculating stationary electrical fields in detailed models of the human heart using finite element analysis . Biomedizin. Technik , 42 ( Supp ) : 199 – 200 .
  • Nalbach M et al. Investigation of the source space of electrocardiography and magnetocardiography using isotropic and anisotropic thorax model Computers Cardiol. 29 501 504 2002
  • Olson , LG and Throne , RD . 1995 . Computational issues arising in multidimensional elliptic inverse problems: the inverse problem of electrocardiography . Eng. Comput. , 12 ( 4 ) : 343 – 356 .
  • Olson LG et al. Comparison of techniques for the inverse problem of electrocardiography applied to data from six isolated rabbit heart experiments 24th Ann. Meet. Comp. Cardiol. 437 440 1997 Lund
  • Pennacchio M A non-conforming domain decomposition method for the cardiac potential problem Computers Cardiol. 28 537 540 2001 IEEE
  • Pullan AJ Bradley CP A computational procedure for modelling electrical activity from heart to body surface 19th Ann. Int. Conf. IEEE Eng. Med. Biol. 125 128 1997
  • Raaijmakers E et al. Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography Med. Biol. Eng. Comput. 36 5 592 597 1998
  • Ragan PM et al. Magnetically induced currents and fields in the canine heart: a finite element study Int. Conf. IEEE Eng. Med. Biol. Soc. 321 322 1994 Baltimore
  • Ragan PM et al. Magnetically induced currents in the canine heart: a finite element study IEEE Trans. Biomed. Eng. 42 11 1110 1116 1995
  • Ramon C et al. MCG simulations with a realistic heart-torso model IEEE Trans. Biomed. Eng. 45 11 1323 1331 1998
  • Rohde LE et al. Echocardiography-derived left ventricular end-systolic regional wall stress and matrix remodelling after experimental myocardial infarction J. Am. Coll. Cardiol. 33 3 835 842 1999
  • Sanfelici , S . 2002 . Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiography . Num. Meth. PDE , 18 ( 2 ) : 218 – 240 .
  • Schelert J et al. Accelerating eigenvector computations for inverse electrocardiography applications 23rd Ann. Meet. Comp. Cardiol. 385 388 1996 Indianapolis, IEEE
  • Schneider F et al. Filtering characteristics of the human body and reconstruction limits in the inverse problem of electrocardiography Computers Cardiol. 25 689 692 1998
  • Schneider F et al. Optimizing electrode positions for solving the inverse problem in electrocardiography Biomedizin. Technik 43 Supp 58 59 1998
  • Shahidi , AV and Savard , P . 1994 . Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans . IEEE Trans. Biomed. Eng. , 41 ( 3 ) : 249 – 256 .
  • Shahidi , AV and Savard , P . 1994 . Forward problem of electrocardiography: construction of human torso models and field calculations using finite element method . Med. Biol. Eng. Comput. , 32 ( 4 ) : S25 – S33 .
  • Shahidi AV Savard P Regularized-truncation approach in inverse problem of electrocardiography Int. Conf. IEEE Eng. Med. Biol. Soc. 135 136 1994 Baltimore
  • Smaill BH et al. Cardiac structure and electrical activation: models and measurement Clin. Exp. Pharmacol. Physiol. 31 12 913 919 2004
  • Solomon SD et al. Assessment of regional left ventricular wall stress after myocardial infarction by echocardiography-based structural analysis J. Am. Soc. Echocardiogr. 11 10 938 947 1998
  • Thivierge M et al. Effects of myocardial anisotropy in the forward problem of electrocardiography IEEE Eng. Med. Biol. 17th Ann. Conf. 239 240 1995 Montreal, IEEE
  • Throne RD Olson LG Generalized matrix eigensystem approach to the inverse problem of electrocardiography Computers Cardiol. 301 303 1993 London, IEEE
  • Throne RD Olson LG Truncated eigenvector solution to the inverse problem of electrocardiography 15th Ann. Int. Conf. IEEE Eng. Med. 771 772 1993 San Diego
  • Throne RD Olson LG Computational issues arising in models of the inverse problem of electrocardiography Int. Conf. IEEE Eng. Med. Biol. Soc. 131 132 1994 Baltimore
  • Throne , RD and Olson , LG . 1995 . The effects of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography . IEEE Trans. Biomed. Eng. , 42 ( 12 ) : 1192 – 1200 .
  • Throne RD et al. Vector expansion techniques for the inverse problem of electrocardiography: application to a realistic heart-torso geometry Biomed. Sci. Instrument. 32 101 106 1996
  • Throne RD et al. Higher order generalized eigensystem and Tikhonov regularization techniques for inverse electrocardiography 24th Ann. Meet. Comp. Cardiol. 17 20 1997 Lund
  • Wang H et al. Present research situation of cause of formation of impedance cardiograph waveform J. Biomed. Eng. 16 1 100 103 1999
  • Wang W et al. Electric fields induced in a human heart by MRI gradient coils: a finite element study IEEE Eng. Med. Biol. 17th Ann. Conf. 475 476 1995 Montreal, IEEE
  • Wang W et al. Magnetically induced myocardial electric fields: a finite element study IEEE Eng. Med. Biol. 17th Ann. Conf. 325 326 1995 Montreal, IEEE
  • Wei , He and Singer , H . 1993 . Method for the treatment of anisotropic skeletal muscle layer in the electrocardiographic calculation . Biomed. Sci. Instrument. , 29 : 473 – 480 .
  • Wtorek , J . 2000 . Relations between components of impedance cardiogram analyzed by means of finite element model and sensitivity theorem . Ann. Biomed. Eng. , 28 ( 11 ) : 1352 – 1361 .

Cardiac catheterisation

  • Banerjee RK et al. Catheter obstruction effect on pulsatile flow rate- pressure drop during coronary angioplasty 1997 Bioeng. Conf. BED 35 79 80 1997 ASME
  • Cao H et al. FEM analysis of predicting electro-myocardium contact from RF cardiac catheter ablation system impedance IEEE Trans. Biomed. Eng. 49 6 520 526 2002
  • Chiu HM Mohan AS Computer aided design of miniaturized antennas for microwave cardiac ablation Asia-Pacific Microwave Conf. 1299 1302 2001 APMC, Taipei
  • Chiu HM et al. Miniaturized antennas for microwave ablation of cardiac arrhythmias 2000 Asia-Pacific Microwave Conf 50 53 2000 CD-ROM, IEEE
  • Demazumder D et al. Biophysics of radio frequency ablation using an irrigated electrode J. Interv. Card. Electrophysiol. 5 4 377 389 2001
  • Gopakumaran B et al. Real-time continuous measurement of right ventricular volume using a conductance catheter Biomed. Instrum. Tech. 30 5 427 438 1996
  • Gopakumaran B et al. A scheme to correct for electric field non-uniformity in right ventricular volume measurement using a conductance catheter Computers Cardiol. 25 677 680 1998 IEEE
  • Gopakumaran B et al. Estimation of current leakage in left and right ventricular conductance volumetry using a dynamic finite element model IEEE Trans. Biomed. Eng. 47 11 1476 1486 2000
  • Gopalakrishnan , J . 2002 . A mathematical model for irrigated epicardial radiofrequency ablation . Ann. Biomed. Eng. , 30 ( 7 ) : 884 – 893 .
  • Haemmerich D et al. Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study Med. Biol. Eng. Comput. 41 3 317 323 2003
  • Haemmerich D et al. Thermal dose versus isotherm as lesion boundary estimator for cardiac and hepatic radio-frequency ablation Ann. Int. Conf. IEEE Eng. Med. Biol. 134 137 2003 Cancun, IEEE
  • Hettrick , DA and Warltier , DC . 1993 . Finite element model of the impedance catheter technique for ventricular volume measurement . Finite Elem. Anal. Design , 14 ( 4 ) : 361 – 372 .
  • Hong Cao et al. FEM analysis of predicting electrode-myocardium contact from RF cardiac catheter ablation system impedance IEEE Trans. Biomed. Eng. 49 6 520 526 2002
  • Jain MK et al. Chilled-tip electrode radio frequency ablation of the endocardium: a finite element study IEEE Eng. Med. Biol. 17th Ann. Conf. 273 274 1995 Montreal, IEEE
  • Jain MK et al. Effect of skin electrode location on radiofrequency ablation lesions: an in vivo and a three-dimensional finite element study J. Cardiovasc. Electrophys. 9 12 1325 1335 1998
  • Kaouk Z et al. Numerical model of microwave ablation of the myocardium IEEE Eng. Med. Biol. 17th Ann. Conf. 277 278 1995 Montreal, IEEE
  • Kaouk Z et al. Modelling of myocardial temperature distribution during radiofrequency ablation Med. Biol. Eng. Comput. 34 2 165 170 1996
  • Kaouk Z et al. A finite element model of a microwave catheter for cardiac ablation IEEE Trans. Microwave Theo. 44 10 1848 1854 1996
  • Kassah GS et al. Measurement of coronary lumen using an impedance catheter: finite element model and in vitro validation Ann. Biomed. Eng. 32 12 1642 1653 2004
  • Khebir A et al. Microwave ablation for the treatment of heart rhythm disorders Int. Conf. IEEE Eng. Med. Biol. Soc. 786 787 1994 Baltimore
  • Khebir A et al. Modeling a microwave catheter antenna for cardiac ablation IEEE MTT-S Int. Microwave Symp. 299 302 1995 Orlando
  • Labonte S et al. Monopoles for microwave catheter ablation of heart tissue IEEE MTT-S Int. Microwave Symp. 303 306 1995 Orlando
  • Lai YC et al. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures IEEE Trans. Biomed. Eng. 51 10 1859 1864 2004
  • Min X Mehra R Analysis of the variables that affect electrode and tissue temperature during RF ablation in a finite element analysis model Computers Cardiol. 26 205 208 1999 IEEE
  • Oh S Dove J Finite element analysis of a Swan-Ganz catheter balloon interacting with the pulmonary artery 1998 ASME Int. Mech. Eng. Cong. Expo. BED 39 45 46 1998 ASME
  • Salazar Y et al. Transcatheter measurement of myocardium electrical impedance: 2 versus 3 electrode method Ann. Int. Conf. IEEE Eng. Med. Biol. 3102 3105 2003 Cancun, IEEE
  • Salazar Y et al. Effect of electrode locations and respiration in the characterization of myocardial tissue using a transcatheter impedance method Physiolog. Measur. 25 5 1095 1103 2004
  • Shahidi , AV and Savard , P . 1994 . A finite element model for radiofrequency ablation of the myocardium . IEEE Trans. Biomed. Eng. , 41 ( 10 ) : 963 – 968 .
  • Tsai JZ Measurement of in vivo and in vitro swine myocardial resistivity PhD Thesis University of Wisconsin-Madison 2001
  • Tungjitkusolmun S et al. Finite element analyses of uniform current density electrodes for radio frequency cardiac ablation IEEE Trans. Biomed. Eng. 47 1 32 40 2000
  • Tungjitkusolmun S et al. Thermal-electrical finite element modelling for radio frequency cardiac ablation: effects of changes in myocardial properties Med. Biol. Eng. Comput. 38 5 562 568 2000
  • Tungjitkusolmun S et al. Guidelines for predicting lesion size at common endocardial locations during radio-frequency ablation IEEE Trans. Biomed. Eng. 48 2 194 201 2001
  • Tungjitkusolmun S et al. Modeling bipolar phase-shifted multielectrode catheter ablation IEEE Trans. Biomed. Eng. 49 1 10 17 2002
  • Wang YP et al. Topology supported finite element method analysis of catheter/guidewire navigation in reconstructed coronary arteries 24th Ann. Meet. Comp. Cardiol. 529 532 1997 Lund
  • Woo EJ et al. A new catheter design using needle electrode for subendocardial RF ablation of ventricular muscles: finite element analysis and in vitro experiments IEEE Trans. Biomed. Eng. 47 1 23 31 2000

Aneurysm

  • Aenis M et al. Modeling of flow in a straight stented and nonstented side wall aneurysm model J. Biomech. Eng. ASME 119 2 206 212 1997
  • Burleson AC et al. Computer modeling of intracranial saccular and lateral aneurysm for the study of their hemodynamics Neurosurgery 37 4 774 784 1995
  • Fillinger MF et al. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk J. Vasc. Surg. 36 3 589 597 2002
  • Fillinger MF et al. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter J. Vasc. Surg. 37 4 724 732 2003
  • Finol , EA and Amon , CH . 2003 . Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow . Acta Cient. Venez. , 54 ( 1 ) : 43 – 49 .
  • Finol EA et al. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions J. Biomech. Eng. ASME 125 2 207 217 2003
  • Foutrakis GN et al. Saccular aneurysm formation in curved and bifurcating arteries Am. J. Neuroradiol. 20 7 1309 1317 1999
  • Guccione JM et al. Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study Ann. Thorac. Surg. 71 2 654 662 2001
  • Hua , J and Mower , WR . 2001 . Simple geometric characteristics fail to reliably predict abdominal aortic aneurysm wall stresses . J. Vasc. Surg. , 34 ( 2 ) : 308 – 315 .
  • Humphrey , JD and Canham , PB . 2000 . Structure, mechanical properties, and mechanics of intracranial saccular aneurysms . J. Elast. , 61 ( 1/3 ) : 49 – 81 .
  • Kato Y et al. Development of a simple method to construct finite element models of aortas from MRI images and its application to thoracic aortic aneurysm JSME Int. J. Ser C 43 4 787 794 2000
  • Kato Y et al. Development of a method to construct three-dimensional finite element models of thoracic aortic aneurysms from MRI images Int. Worksh. Medical Imag. Augment. Real. 131 136 2001
  • Minoura T et al. Numerical simulations of endovascular balloon occlusion for cerebral aneurysms 1998 ASME Int. Mech. Eng. Cong. Expo. BED 39 51 52 1998 ASME
  • Moonly SM Experimental and computational analysis of left ventricular aneurysm mechanics PhD Thesis University of California, San Francisco 2003
  • Moustakidis P et al. Altered left ventricular geometry changes the border zone temporal distribution of stress in an experimental model of left ventricular aneurysm Circulation 106 12 I168 I175 2002
  • Mower WR et al. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture J. Surg. Res. 55 2 155 161 1993
  • Mower WR et al. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress J. Vascular Surg. 26 4 602 608 1997
  • Oshima M et al. Biosimulation and visualization: effect of cerebrovascular geometry on hemodynamics Ann. NY Acad. Sci. 972 337 344 2002
  • Pless D et al. Multislice CT and computational fluid dynamics: a new technique to visualize, analyze and simulate hemodynamics in aortic aneurysm Stud. Health Technol. Inform. 81 393 395 2001
  • Raghavan M et al. Non-invasive estimation of wall stress distribution in abdominal aortic aneurysm 1998 ASME Int. Mech. Eng. Cong. Expo. BED 39 413 414 1998 ASME
  • Raghavan , ML and Vorp , DA . 2000 . Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model . J. Biomech. , 33 ( 4 ) : 475 – 482 .
  • Raghavan ML et al. Mechanical wall stresses on three-dimensionally reconstructed models of abdominal aortic aneurysm 1999 IEEE Eng. Med. Biol. Soc. Conf. 210 1999
  • Raghavan ML et al. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm J. Vasc. Surg. 31 4 760 769 2000
  • Rollins , G . 2003 . New model better predicts risk of abdominal aortic aneurysm rupture . Rep. Med. Guidel. Outcomes Res. , 14 ( 9 ) : 6 – 7 .
  • Salmon S et al. Medical image-based computational model of pulsatile flow in saccular aneurisms Math. Modell. Numer. Anal. 37 4 663 679 2003
  • Shah AD et al. Elastodynamics of intracranial saccular aneurysms ASME Int. Mech. Eng. Cong. Expo. BED 36 97 98 1997 ASME
  • Shah AD et al. Further roles of geometry and properties in saccular aneurysm mechanics Comp. Meth. Biomech. Biomed. Eng. 1 1 109 121 1997
  • Shojima M et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms Stroke 35 11 2500 2505 2004
  • Smith DB A generalized membrane shell approach for the computation of in vivo stress resultants in thin-walled anatomic structures PhD Thesis University of Pittsburgh 2001
  • Smith DB et al. A modified cylindrical coordinate system for the geometric analysis of abdominal aortic aneurysms 1999 IEEE Eng. Med. Biol. Soc. Conf. 201 1999
  • Stuhne , GR and Steinman , DA . 2004 . Finite element modeling of the hemodynamics of stented aneurysms . J. Biomech. Eng. ASME , 126 ( 3 ) : 382 – 387 .
  • Thubrikar MJ et al. Wall stress studies of abdominal aortic aneurysm in a clinical model Ann. Vasc. Surg. 15 3 355 366 2001
  • Venkatasubramaniam et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms Eur. J. Vasc. Endovasc. Surg. 28 2 168 176 2004
  • Vorp DA et al. Finite element analysis of the effect of diameter and asymmetry on the wall stress distribution in abdominal aortic aneurysm 1997 Bioeng. Conf. BED 35 33 34 1997 ASME
  • Wang DH et al. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm J. Vasc. Surg. 36 3 598 604 2002
  • Wang DHJ et al. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm J. Biomech. Eng. ASME 123 6 536 539 2001
  • Yamada H et al. Mechanical evaluation of growth and rupture in abdominal aorta JSME Int. J. Ser A 37 2 181 187 1994

Atherosclerosis

  • Baldewsing RA et al. A finite element model for performing intravascular ultrasound elastography of human atherosclerotic coronary arteries Ultrasound Med. Biol. 30 6 803 813 2004
  • Baldewsing RA et al. Finite element modeling and intravascular ultrasound elastography of vulnerable plaques: parameter variation Ultrasonics 42 1/9 723 729 2004
  • Banerjee RK et al. Amppulse theory as the etiology of atherosclerosis in branched vessels Winter Ann. Meet. BED 26 71 74 1993 New Orleans, ASME
  • Beattie D et al. Material property determination in heterogeneous, atherosclerotic human aorta 1997 Bioeng. Conf. BED 35 461 462 1997 ASME
  • Beattie D et al. Mechanics of heterogeneous atherosclerotic human aorta: correlation with positive staining for MMP-1 ASME Int. Mech. Eng. Cong. Expo BED 36 95 96 1997 ASME
  • Beattie D et al. Mechanical analysis of heterogeneous, atherosclerotic human aorta J. Biomech. Eng. ASME 120 5 602 607 1998
  • Chandran KB et al. A method for in-vivo analysis for regional arterial wall material property alterations with atherosclerosis: preliminary results Med. Eng. Phys. 25 4 289 298 2003
  • Chau AH et al. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography Ann. Biomed. Eng. 32 11 1494 1503 2004
  • Damangir E et al. Finite element psi-omega formulations of blood flow in bifurcation of femoral artery to predict atherosclerosis plaque formation 2nd Bienn. Eur. Joint Conf. Eng. Syst. Des. PD 64 177 182 1994 ASME
  • Gourisankaran , V and Sharma , MG . 2000 . The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty . Crit. Rev. Biomed. Eng. , 28 ( 1/2 ) : 47 – 51 .
  • Hayashi K Imai Y FEM analysis of stress in atherosclerotic vascular wall 1995 Bioeng. Conf. BED 29 63 64 1995 Beever Creek, ASME
  • Hayashi , K and Imai , Y . 1997 . Tensile property of atheromatous plaque and an analysis of stress in atherosclerotic wall . J. Biomech. , 30 ( 6 ) : 573 – 579 .
  • Huang H et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques Circulation 103 8 1051 1056 2001
  • Kaazempur-Mofrad M et al. Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology Ann. Biomed. Eng. 32 7 932 946 2004
  • Kaazempur-Mofrad M et al. Atherosclerotic human carotid bifurcations: mechanical and histological factors Ann. Int. Conf. IEEE Eng. Med. Biol. 1256 1257 2002 Houston, IEEE
  • Kilpatrick D et al. Correlation of mechanical behavior and MMP-1 presence in human atherosclerotic plaque J. Mech. Med. Biol. 2 1 1 7 2002
  • Lee RT et al. High stress regions in saphenous vein bypass graft atherosclerotic lesions J. Am. Coll. Cardiol. 24 7 1639 1644 1994
  • Lee RT et al. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. implications for plaque rupture Arterioscler. Thromb. Vasc. Biol. 16 8 1070 1073 1996
  • Liu , B . 2003 . Pressure drop in curved atherosclerotic arteries . ASME Int. Mech. Eng. Cong. , BED 55 : 55 – 56 .
  • Nagaraj A et al. In-vivo regional assessment of atherosclerotic vascular material properties using three-dimensional intravascular ultrasound reconstruction and FEA 1997 Bioeng. Conf. BED 35 463 464 1997 ASME
  • Najarian , S and Sharifzadeh , H . 2001 . Effects of balloon inflation on the atherosclerotic plaque . Biomed. Sci. Instrument. , 37 : 337 – 341 .
  • Oh S et al. Finite element analysis of balloon angioplasty Med. Biol. Eng. Comput. 32 4 S108 S114 1994
  • Ohayon J et al. In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method Coron. Artery Dis. 12 8 655 663 2001
  • Pao YC et al. Incremental loading, plane-strain prediction of dilation rupture of atherosclerotic plaque within the coronary arterial wall ASME Int. Mech. Eng. Cong. Expo. BED 33 417 418 1996 ASME
  • Perktold , K and Rappitsch , G . 1995 . Mathematical modeling of arterial blood flow and correlation to atherosclerosis . Technol. Health Care , 3 ( 3 ) : 139 – 151 .
  • Saijo Y et al. Application of scanning acoustic microscopy for assessing stress distribution in atherosclerotic plaque Ann. Biomed. Eng. 29 12 1048 1053 2001
  • Salunke , NV and Topoleski , LDT . 1997 . Biomechanics of atherosclerotic plaque . Crit. Rev. Biomed. Eng. , 25 ( 3 ) : 243 – 285 .
  • Salzar RS et al. Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis J. Biomech. 28 11 1333 1340 1995
  • Singh A et al. Extraluminal laser angioplasty (ELAN), a new method for treating atherosclerotic vessels Proc. SPIE 4949 477 487 2003
  • Stiles DK Oakley B Simulation of electrode impedance and current densities near an atherosclerotic lesion 2nd Ann. Int. IEEE-EMBS Spec. Topic. Conf. 57 61 2002 Madison, IEEE
  • Tang D et al. 3D MRI-based multicomponent FSI Model for atherosclerotic plaques Ann. Biomed. Eng. 32 7 947 960 2004
  • Taylor CA et al. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis Ann. Biomed. Eng. 26 975 987 1998
  • Treyve F et al. Modelling of the stress distribution in an artherosclerotic plaque in man using a finite element analysis Comptes Rendus Mecanique 331 6 449 454 2003
  • Veress AI et al. Finite element modeling of atherosclerotic plaque Computers Cardiol. Murray A IEEE 1993 791 795
  • Veress AI et al. Age-related development of atherosclerotic plaque stress: a population-based finite element analysis Coron. Artery Dis. 9 1 13 19 1998
  • Younis HF Fluid and structural modeling of the disease-free and atherosclerotic human carotid bifurcation PhD Thesis MIT 2002
  • Zhang W et al. Effect of surrounding tissue on vessel fluid and solid mechanics J. Biomech. Eng. ASME 126 6 760 769 2004

Arrhythmias and defibrillation

  • Aguel F et al. Impact of transvenous lead position on active-can ICD defibrillation: a computer simulation study Pacing Clin. Electrophys. 22 1 158 164 1999
  • Aguel F et al. Virtual electrodes induced throughout bulk myocardium by ICD defibrillation 1999 IEEE Eng. Med. Biol. Soc. Conf. 289 1999
  • Aguel F et al. Biphasic defibrillation in a model of the rabbit heart Ann. Int. Conf. IEEE Eng. Med. Biol. 1424 1425 2002 Houston, IEEE
  • Argoubi M Leon LJ Model study of extracellular stimulation of cardiac tissue Int. Conf. IEEE Eng. Med. Biol. Soc. 71 72 1994 Baltimore
  • Argoubi M Leon LJ Model study of defibrillation of cardiac tissue IEEE Eng. Med. Biol. 17th Ann. Conf. 315 316 1995 Montreal, IEEE
  • Baynham TC Role of fiber structure-dependent electrically induced membrane polarizations in proarrhythmic early epicardial activations PhD Thesis University of Alabama, Birmingham 2001
  • Camacho MA et al. Effects of epicardial patch electrodes on transthoracic defibrillation: a three-dimensional finite element study,” 15th Ann Int. Conf. IEEE Eng. Med. 834 835 1993 San Diego
  • Camacho MA et al. Paddle position and size effects in human transthoracic defibrillation: a three-dimensional finite element model 15th Ann. Int. Conf. IEEE Eng. Med. 824 825 1993 San Diego
  • Camacho MA et al. A three-dimensional finite element model of human transthoracic defibrillation: paddle placement and size IEEE Trans. Biomed. Eng. 42 6 572 578 1995
  • Chou STA et al. Pericardial effusion increases defibrillation threshold—a finite element method study IEEE Eng. Med. Biol. 17th. Ann. Conf. 319 320 1995 Montreal, IEEE
  • De Jongh AL et al. Determining the level of complexity required to model transvenous defibrillation fields 24th Ann. Meet. Comp. Cardiol. 239 242 1997 Lund
  • De Jongh AL et al. Effects of cardiac anisotropy on modeling transvenous defibrillation in the human thorax 19th Ann. Int. Conf. IEEE Eng. Med. Biol. 133 135 1997
  • De Jongh AL et al. Optimizing electrode placement in a proposed ICD system incorporating LV electrodes: finite element analysis Computers Cardiol. 25 281 284 1998
  • De Jongh AL et al. Defibrillation efficacy of different electrode placements in a human thorax model Pacing Clin. Electrophys. 22 1 152 157 1999
  • Eason , JC and Malkin , RA . 2000 . A simulation study evaluating the performance of high-density electrode arrays on myocardial tissue . IEEE Trans. Biomed. Eng. , 47 ( 7 ) : 893 – 901 .
  • Eason J et al. A novel ultrasound technique to estimate right ventricular geometry during fibrillation Physiolog. Measur. 23 2 269 278 2002
  • Eason JC et al. An accurate finite element model of the heart for calculating the electric field due to defibrillation Computers Cardiol. Murray A IEEE 1993 57 60
  • Entcheva , E . 2000 . Influence of the electric axis of stimulation on the induced transmembrane potentials in ellipsoidal bidomain heart . Ann. Biomed. Eng. , 28 ( 3 ) : 244 – 252 .
  • Entcheva E et al. Simple classification technique for 3D highly heterogeneous domains and its application in defibrillation modeling 19th Ann. Int. Conf. IEEE Eng. Med. Biol. 399 402 1997
  • Entcheva E et al. Patterns of a mechanisms for shock-induced polarization in the heart: a bidomain analysis IEEE Trans. Biomed. Eng. 46 3 260 270 1999
  • Gao S et al. Three-dimensional uniform grid modeling of electrical defibrillation on a data parallel computer Comp. Biol. Med. 25 3 335 348 1995
  • Hillebrenner MG et al. Postshock arrhythmogenesis in a slice of the canine heart J. Cardiovasc. Electrophys. 14 10 S249 S256 2003
  • Huang Q et al. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D FE bidomain/monodomain torso model IEEE Trans. Biomed. Eng. 46 1 26 34 1999
  • Hutchinson SA Ng KT Optimization algorithm for electrode configurations in transcardiac defibrillation 15th Ann. Int. Conf. IEEE Eng. Med. 836 837 1993 San Diego
  • Hutchinson SA et al. Electrical defibrillation optimization: an automated, iterative parallel finite element approach IEEE Trans. Biomed. Eng. 44 4 278 289 1997
  • Izumi , K and Izumi , J . 1996 . Perpetual atrial arrhythmias causing a prolonged returning cycle as an expression of cardiac resonant oscillation . Materia Medica Polona , 28 ( 1 ) : 20 – 28 .
  • Jantz SJ et al. Visualization of finite element models of defibrillation IEEE Eng. Med. Biol. 17th Ann. Conf. 359 360 1995 Montreal, IEEE
  • Jorgenson DB et al. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model IEEE Trans. Biomed. Eng. 42 2 172 184 1995
  • Jorgenson DB et al. Predicting cardiothoracic voltage during high energy shocks: methodology and comparison of experimental to finite element model data IEEE Trans. Biomed. Eng. 42 6 559 571 1995
  • Karlon WJ et al. Effects of paddle placement and size on defibrillation current distribution-a 3-dimensional finite element model IEEE Trans. Biomed. Eng. 40 3 246 255 1993
  • Karlon WJ et al. Finite element models of thoracic conductive anatomy: sensitivity to changes in inhomogeneity and anisotropy IEEE Trans. Biomed. Eng. 41 11 1010 1017 1994
  • Kinst TF et al. Internal electrical defibrillation: a three-dimensional finite element model of current density distribution 15th Ann. Int. Conf. IEEE Eng. Medic. 819 820 1993 San Diego
  • Kinst TF et al. Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax J. Cardiovasc. Electrophys. 8 5 537 547 1997
  • Kramer NR et al. Optimizing dual threshold shocks with right- and left-ventricular electrodes simulating defibrillation with a human thorax model 22nd Ann. Int. Conf. Eng. Med. Biol. Soc. 2110 2113 2000
  • Krasteva , VT and Papazov , SP . 2002 . Estimation of current density distribution under electrodes for external defibrillation . Biomed. Eng. Online , 1 ( 1 ) : 7
  • Mears AN Holley LK Effect of uniform and non-uniform electric fields on defibrillation thresholds for monophasic and biphasic waveforms IEEE Eng. Med. Biol. 17th Conf. 267 268 1995 Montreal, IEEE
  • Meunier JM et al. Termination of reentry by a long-lasting AC shock in a slice of canine heart: a computational study J. Cardiovasc. Electrophys. 13 12 1253 1261 2002
  • Min X Mehra R finite element analysis of patch electrodes for cardiac defibrillation in a simulated tank 15th Ann. Int. Conf. IEEE Eng. Med. 826 827 1993 San Diego
  • Min , X and Mehra , R . 1998 . Finite element analysis of defibrillation fields in a human torso model for ventricular defibrillation . Prog. Biophys. Mol. Biol. , 69 ( 2/3 ) : 353 – 386 .
  • Min X et al. Detailed human thorax FEM model for the cardiac defibrillation study 15th Ann. Int. Conf. IEEE Eng. Med. 838 839 1993 San Diego
  • Mohammed , OA and Uler , FG . 1993 . Detailed 2-D and 3-D finite element modeling of the human body for the evaluation of defibrillation fields . IEEE Trans. Magnet. , 29 ( 2 ) : 1403 – 1407 .
  • Nadeem A et al. Image processing and grid generation for finite element analysis of defibrillation 15th Ann. Int. Conf. IEEE Eng. Med. 832 833 1993 San Diego
  • Nash , MP and Panfilov , AV . 2004 . Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias . Prog. Biophys. Mol. Biol. , 85 ( 2/3 ) : 501 – 522 .
  • Ng KT et al. Numerical analysis of electrical defibrillation. The parallel approach J. Electrocardiol. 28 Supp 15 20 1995
  • Panescu D et al. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax IEEE Trans. Biomed. Eng. 42 2 185 192 1995
  • Panescu D et al. Optimisation of transcutaneous cardiac pacing by three-dimensional finite element modeling of the human thorax Med. Biol. Eng. Comput. 33 6 769 775 1995
  • Panescu D et al. Modeling current density distributions during transcutaneous cardiac pacing IEEE Trans. Biomed. Eng. 41 6 549 555 1994
  • Papazov S et al. Optimization of the defibrillation current density in the heart region by a two-layer segmented electrode J. Med. Eng. Tech. 25 1 28 33 2001
  • Papazov S et al. Electrical current distribution under transthoracic defibrillation and pacing electrodes J. Med. Eng. Tech. 26 1 22 27 2002
  • Pendekanti R et al. Importance of representing surface geometry and electrode resistance of transvenous electrodes in defibrillation models Int. Conf. IEEE Eng. Med. Biol. Soc. 29 30 1994 Baltimore
  • Pendekanti R et al. Combined experimental and modeling approach for designing transvenous defibrillation leads 1st 1995 Reg. Conf. IEEE Biomed. Eng. 1995 357 358 1995 New Delhi
  • Province RA et al. Effects of defibrillation shock energy and timing on 3-D computer model of heart Ann. Biomed. Eng. 21 1 19 31 1993
  • Ranjan , R and Thakor , NV . 1995 . Electrical stimulation of cardiac myocytes . Ann. Biomed. Eng. , 23 ( 6 ) : 812 – 821 .
  • Ranjan R et al. Electrical hot spot as a mechanism of defibrillation Computers Cardiol. 245 246 1993 London, IEEE
  • Russomanno , DJ and Hicks , K . 2002 . Prolog-based centroid algorithm for isovolume extraction from finite element torso simulations . Comp. Meth. Progr. Biomed. , 67 ( 2 ) : 105 – 114 .
  • Schimpf PH et al. Effects of electrode interface impedance on finite element models of transvenous defibrillation Med. Biol. Eng. Comput. 33 5 713 719 1995
  • Schimpf PH et al. Sensitivity of transvenous defibrillation models to adaptive mesh density and resolution: the potential for interactive solution times Int. J. Med. Info. 45 3 193 207 1997
  • Schmidt JA Johnson CR DefibSim: an interactive defibrillation device design tool IEEE Eng. Med. Biol. 17th Ann. Conf. 305 306 1995 Montreal, IEEE
  • Schreyer AG et al. 3D modeling of the chest in patients with implanted cardiac defibrillator for further bioelectrical simulation CAR '98, 12th Int. Symp. Exhib. 194 198 1998 Elsevier
  • Seneta EB Holley L Customizing implantable defibrillator electrodes—an efficient finite element model for desk-top personal computers Computers Cardiol. Murray A IEEE 1993 49 52
  • Wang Y et al. Analysis of defibrillation efficacy from myocardial voltage gradients with finite element modeling IEEE Trans. Biomed. Eng. 46 9 1025 1036 1999
  • Wang Y et al. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography IEEE Trans. Biomed. Eng. 48 12 1390 1401 2001
  • Wu J et al. Vibration analysis of medical devices with a calibrated FEA model Comput. Struct. 80 12 1081 1086 2002
  • Wurtz S et al. Studies of by transthoracic defibrillation-induced electrical field distribution in detailed finite element models of the human body Biomedizin. Technik 42 Supp 143 144 1997

Infarction

  • Aelen FW et al. Kinematic analysis of left ventricular deformation in myocardial infarction using magnetic resonance cardiac tagging Int. J. Cardiac Imaging 15 3 241 251 1999
  • Aikawa Y et al. Regional wall stress predicts ventricular remodeling after anteroseptal myocardial infarction in the healing and early afterload reducing trial Am. Heart J. 141 2 234 242 2001
  • Brunette J et al. Biomechanics of plaque rupture: a global integration approach J. Clin. Eng. 28 3 163 173 2003
  • Czapski P et al. MCG simulations of myocardial infarctions with a realistic heart-torso model IEEE Trans. Biomed. Eng. 45 11 1313 1322 1998
  • Geerts-Ossevoort L Cardiac myofiber reorientation: a mechanism for adaption? Dr Thesis Tech. Univ. Eindhoven 2002
  • Gotte MJ et al. Recognition of infarct localization by specific changes in intramural myocardial mechanics Am. Heart J. 138 6 1038 1045 1999
  • Kraitchman DL et al. Integrated MRI assessment of regional function and perfusion in canine myocardial infarction Magnet. Reson. Med. 40 2 311 326 1998
  • Liu W et al. Harmonic phase MR tagging for direct quantification of Lagrangian strain in rat hearts after myocardial infarction Magnet. Reson. Med. 52 6 1282 1290 2004
  • Marcus JT et al. Myocardial function in infarcted and remote regions early after infarction in man: assessment by magnetic resonance tagging and strain analysis Magnet. Reson. Med. 38 5 803 810 1997
  • Ono K et al. 3-D computer simulation study of body surface Laplacian ECG maps: myocardial infarction 15th Ann. Int. Conf. IEEE Eng. Med. 804 805 1993 San Diego
  • Pao , YC and Ritman , EL . 1998 . Comparative characterization of the infarcted and reperfused ventricular wall muscles by FE analysis and a myocardial muscle–blood composite model . Comp. Biomed. Res. , 31 ( 1 ) : 18 – 31 .
  • Reif TH Silver MD Pathogenesis of cardiac rupture following acute myocardial infarction 1994 Int. Mech. Eng. Cong. Expo. BED 28 99 100 1994 ASME
  • Reif , TH and Silver , MD . 1995 . Role of stress concentration in the pathogenesis of cardiac rupture following acute myocardial infarction . Canad. J. Cardiol. , 11 ( 9 ) : 757 – 762 .
  • Rohde LE et al. Echocardiography-derived left ventricular end-systolic regional wall stress and matrix remodelling after experimental myocardial infarction J. Am. Coll. Cardiol. 33 3 835 842 1999
  • Sathyamoorthy M Two dimensional finite element analysis of myocardial infarction in the human left ventricle ASME Int. Mech. Eng. Cong. Expo BED 36 3 4 1997 ASME
  • Schablowski M et al. A model study of body surface Laplacian maps for myocardial infarctions 19th Ann. Int. Conf. IEEE Eng. Med. Biol. 338 339 1997
  • Solomon SD et al. Assessment of regional left ventricular wall stress after myocardial infarction by echocardiography-based structural analysis J. Am. Soc. Echocardiogr. 11 10 938 947 1998
  • Tinova M et al. The uniform double layer model and myocardial infarction: forward solution consideration Bratisl. Lek. Listy 97 9 558 561 1996

Cardiac surgery

  • Amodeo A et al. The beneficial vortex and best spatial arrangement in total extracardiac cavopulmonary connection J. Thorac. Cardiovasc. Surg. 124 3 471 478 2002
  • Bertolotti , C and Deplano , V . 2000 . Three-dimensional numerical simulations of flow through a stenosed coronary bypass . J. Biomech. , 33 ( 8 ) : 1011 – 1022 .
  • Bertolotti C et al. Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses J. Biomech. 34 8 1049 1064 2001
  • Bolzon G et al. Flow on the symmetry plane of a total cavo-pulmonary connection J. Biomech. 35 5 595 608 2002
  • Campbel R et al. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance and stent design Circulat. Res. 84 378 383 1999
  • Cole R et al. Pressure induced stresses and strains in a simulated femoral artery bypass graft junction ASME Int. Mech. Eng. Cong. BED 55 109 110 2003 ASME
  • Dang AB et al. Effect of ventricular size and patch stiffness in surgical anterior ventricular restoration: a finite element model study Ann. Thorac. Surg. 79 1 185 193 2005
  • De Leval MR et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections J. Thoracic Cardiovasc. Surg. 111 3 502 513 1996
  • Deplano V et al. Numerical simulations of unsteady flows in a stenosed coronary bypass graft Med. Biol. Eng. Comput. 39 4 488 499 2001
  • Dubini G et al. Numerical fluid mechanical study of repaired congenital heart defects: application to the total cavopulmonary connection J. Biomech. 29 1 111 121 1996
  • Guccione JM et al. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study J. Thorac. Cardiovasc. Surg. 122 3 592 599 2001
  • Guccione JM et al. Myosplint decreases wall stress without depressing function in the failing heart: a finite element model Ann. Thorac. Surg. 76 4 1171 1180 2003
  • Holbrey R et al. A model for virtual suturing in vascular surgery Theor. Pract. Comput. Graph. 50 58 2004 Bournemouth, IEEE
  • Holzapfel GA et al. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing Ann. Biomed. Eng. 30 6 753 767 2002
  • Inzoli F et al. Numerical analysis of steady flow in aorto-coronary bypass 3D model J. Biomech. Eng. ASME 118 2 172 179 1996
  • Jutley RS et al. Finite element analysis of stress around a sternum screw used to prevent sternal dehiscence after heart surgery Proc. Inst. Mech. Eng. Part H 216 5 315 321 2002
  • Ku JP Numerical and experimental investigations of blood flow with application to vascular bypass surgeries PhD Thesis Stanford University 2004
  • Ku JP et al. In vivo validation of numerical prediction of blood flow in arterial bypass grafts Ann. Biomed. Eng. 30 6 743 752 2002
  • Kunzelman K et al. Replacement of mitral valve posterior chordae tendineae with expanded polytetrafluoroethylene suture: a finite element study J. Cardiac Surg. 11 2 136 145 1996
  • Kunzelman KS et al. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model J. Heart Valve Dis. 7 1 108 116 1998
  • Kute , SM and Vorp , DA . 2001 . The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study . J. Biomech. Eng. ASME , 123 ( 3 ) : 277 – 283 .
  • Lagana K et al. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures Biorheology 39 3/4 359 364 2002
  • Lee RT et al. High stress regions in saphenous vein bypass graft atherosclerotic lesions J. Am. Coll. Cardiol. 24 7 1639 1644 1994
  • Leuprecht A et al. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts J. Biomech. 35 2 225 236 2002
  • Li XM Biomechanical analysis of cuffed distal end-to-side anastomosis of bypass grafts and design optimization PhD Thesis The University of Akron 2001
  • Martin H et al. Experimental and numerical studies of the mechanics of expanded balloon stents VDI Berichte 1599 7 12 2001
  • Migliavacca F et al. Calculating blood flow from Doppler measurements in the systemic to pulmonary artery shunt after the Norwood operation Ultrasound Med. Biol. 26 2 209 219 2000
  • Ohmori S et al. Fundamental research on in vitro laser vascular-welding for aortic dissection Jpn. J. Med. Electron. Biol. Eng. 41 1 1 8 2003
  • Panescu D et al. Intra-operative epicardial lesions in the atria using a multielectrode RF-system Ann. Int. Conf. IEEE Eng. Med. Biol. 148 150 2003 Cancun, IEEE
  • Pennati G et al. Fluid dynamics at connections in paediatric cardiac surgery Meccanica 37 4/5 453 463 2002
  • Perktold K et al. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses Ann. Biomed. Eng. 30 4 447 460 2002
  • Qiao AK et al. Numerical simulations of stenosed femoral artery with symmetric 2-way bypass graft Biomed. Mater. Eng. 14 2 167 174 2004
  • Quarteroni , A and Rozza , G . 2003 . Optimal control and shape optimization of aorto-coronaric bypass anastomoses . Math. Models Meth. Appl. Sci. , 13 ( 12 ) : 1801 – 1823 .
  • Quarterman RL et al. A finite element model of left ventricular cellular transplantation in dilated cardiomyopathy ASAIO J. 48 5 508 513 2002
  • Ratcliffe MB et al. The effect of ventricular volume reduction surgery in the dilated, poorly contractile left ventricle: a simple finite element analysis J. Thorac. Cardiovasc. Surg. 116 4 566 577 1998
  • Ratcliffe MB et al. The effect of diastolic stiffness on ventricular function after partial ventriculectomy: a finite element simulation ASAIO J. 46 1 111 116 2000
  • Reddy SK Nonlinear finite element analysis of balloon angioplasty and the influence of circumferential stress on restenosis 1997 Bioeng. Conf. BED 35 81 82 1997 ASME
  • Reimink MS et al. The effect of anterior chordal replacement on mitral valve function and stresses. a finite element study ASAIO J. 41 3 754 762 1995
  • Reimink MS et al. The effect of chordal replacement suture length on function and stresses in repaired mitral valves: a finite element study J. Heart Valve Dis. 5 4 365 375 1996
  • Richens D et al. A finite element model of blunt traumatic aortic rupture Eur. J. Cardiothorac. Surg. 25 6 1039 1047 2004
  • Ripoli A et al. The effect of mitral annuloplasty on left ventricular regional diastolic function: a finite element model Computers Cardiol. 27 607 610 2000 IEEE
  • Rogers C et al. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance and stent design Circulat. Res. 84 4 378 383 1999
  • Scheltes JS et al. Coronary anastomotic devices: blood-exposed non-intimal surface and coronary wall stress J. Thorac. Cardiovasc. Surg. 126 1 191 199 2003
  • Shea KS et al. Electrostatic harmonic microactuator for arterial plaque removal J. Micromech. Microeng. 5 4 297 304 1995
  • Singh A et al. Extraluminal laser angioplasty (ELAN), a new method for treating atherosclerotic vessels Proc. SPIE 4949 477 487 2003
  • Steele BN A simulation-based medical planning system for occlusive cardiovascular disease using one-dimensional analysis techniques PhD Thesis Stanford University 2003
  • Steele BN et al. In vivo validation of a one-dimensional finite element method for simulation-based medical planning for cardiovascular bypass surgery 23rd Ann. Int. Conf. Eng. Med. Biol. Soc. 120 123 2001 Istanbul, IEEE
  • Steele BN et al. In vivo validation of a one-dimensional finite element method for predicting blood flow in cardiovascular bypass grafts IEEE Trans. Biomed. Eng. 50 6 649 656 2003
  • Thornton , BS and Hung , WT . 1996 . Dynamic stiffness and implications for assisting the operation of the left ventricle . IMA J. Math. Appl. Med. Biol. , 13 ( 4 ) : 275 – 295 .
  • Trobec R et al. Computer simulation and spatial modelling in heart surgery Comp. Biol. Med. 28 4 393 403 1998
  • Votta E et al. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation J. Heart Valve Dis. 11 6 810 822 2002
  • Webb DC et al. A finite element simulation of the operation of a nonbioprosthetic heart valve with leaflet geometry Comp. Biomed. Held KD CMP 1993 41 50
  • Yamamoto Y et al. Palpation simulator of beating aorta for cardiovascular surgery training Trans. Inst. Electr. Eng. Jpn. E 123 3 85 91 2003

Other heart diseases

  • Aoki , T and Ku , DN . 1993 . Collapse of diseased arteries with eccentric cross section . J. Biomech. , 26 ( 2 ) : 133 – 142 .
  • Avolio A et al. Quantification of alterations in structure and function of elastin in the arterial media Hypertension 32 1 170 175 1998
  • Ballyk PD et al. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses J. Biomech. 31 3 229 237 1998
  • Bovendeerd PH et al. Regional wall mechanics in the ischemic left ventricle: numerical modeling and dog experiments Am. J. Physiol. 270 1 398 410 1996
  • Darbeau MZ et al. Simulated lipoprotein transport in the wall of branched arteries ASAIO J. 46 6 669 678 2000
  • Gorman JH et al. The effect of regional ischemia on mitral valve annular saddle shape Ann. Thorac. Surg. 77 2 544 548 2004
  • Grande-Allen KJ et al. Mechanisms of aortic valve incompetence: finite element modeling of marfan syndrome J. Thorac. Cardiovasc. Surg. 122 5 946 954 2001
  • Hattori M et al. Does hypertension or aging modulate directional shortening of the left ventricular midwall? Jpn. Circulat. J. 57 4 253 262 1993
  • Jarosz BJ Interstitial instrumentation for therapeutic ultrasonic heating: modeling the discrete blood vessels 16th IEEE Instrument. Measur. Tech. Conf. 567 572 1999 Venice, IEEE
  • Jarosz , BJ . 2000 . Interstitial instrumentation for therapeutic ultrasonic heating: modeling the discrete blood vessels . IEEE Trans. Instrum. Measur. , 49 ( 2 ) : 260 – 264 .
  • Jarosz BJ Effects of discrete blood vessels in ultrasound interstitial heating from FEA modeling Ann Int. Conf. IEEE Eng. Med. Biol. 801 804 2000
  • Kim DW Calculation of blood volume change in impedance cardiography by a 3-D finite element thoracic model Int. Conf. IEEE Eng. Medic. Biol. Soc. 888 889 1994 Baltimore
  • LeGrice IJ et al. Impaired subendocardial function in tachycardia-induced cardiac failure Am. J. Physiol. 268 5 1788 1794 1995
  • Matsumoto T et al. FEM analysis of stress and deformation in the vicinities of arterial graft anastomosis J. Appl. Biomater. 5 1 79 87 1994
  • Mazhari R McCulloch AD Three-dimensional models of regionally ischemic left ventricle IEEE Eng. Med. Biol. Soc. Conf. 1201 1999
  • Mazhari , R and McCulloch , AD . 2000 . Integrative models for understanding the structural basis of regional mechanical dysfunction in ischemic myocardium . Ann. Biomed. Eng. , 28 ( 8 ) : 979 – 990 .
  • Miglivacca F et al. Computational pulsatile model of the bidirectional cavopulmonary anastomosis the influence of pulmonary forward flow J. Biomech. Eng. ASME 118 4 520 528 1996
  • Migliavacca F et al. Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis Med. Eng. Phys. 19 4 394 403 1997
  • Migliavacca F et al. Pressure drops in a distensible model of end-to-side anastomosis in systemic-to-pulmonary shunts Comp. Meth. Biomech. Biomed. Eng. 5 3 243 248 2002
  • Moulton MJ et al. Magnetic resonance imaging provides evidence for remodeling of the right ventricle after single-lung transplantation for pulmonary hypertension Circulation 94 9 312 319 1996
  • Pattynama PM et al. Evaluation of cardiac function with magnetic resonance imaging Am. Heart J. 128 3 595 607 1994
  • Rodriguez B et al. Effect of acute global ischemia on the upper limit of vulnerability: a simulation study Am. J. Physiol. Heart Circ. Physiol. 286 6 H2078 2004
  • Sepulveda , NG and Wikswo , JP . 1994 . Bipolar stimulation of cardiac tissue using an anisotropic bidomain model . J. Cardiovasc. Electrophys. , 5 ( 3 ) : 258 – 267 .
  • Tibayan FA et al. Increases in mitral leaflet radii of curvature with chronic ischemic mitral regurgitation J. Heart Valve Dis. 13 5 772 778 2004
  • Trayanova , N . 1996 . Discrete versus syncytial tissue behavior in a model of cardiac stimulation I: Mathematical formulation . IEEE Trans. Biomed. Eng. , 43 ( 12 ) : 1129 – 1140 .
  • Usyk TP et al. Regional septal dysfunction in a three-dimensional computational model of focal myofiber disarray Am. J. Physiol. Heart Circ. Physiol. 281 2 H506 H514 2001
  • Wahle A et al. Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct 3-D modeling Proc. SPIE 5029 129 137 2003
  • Williamson SD et al. On the sensitivity of wall stresses in diseased arteries to variable material properties J. Biomech. Eng. ASME 125 1 147 155 2003
  • Wise RG et al. Geometrical models of left ventricular contraction from MRI of the normal and spontaneously hypertensive rat heart Phys. Med. Biol. 44 10 2657 2676 1999
  • Wtorek J et al. An averaging two-electrode probe for monitoring changes in myocardial conductivity evoked by ischemia IEEE Trans. Biomed. Eng. 49 3 240 246 2002
  • Yamada H et al. Mechanical effect of surrounding lipid layer and myocardial tissue on hydraulic resistance of canine coronary artery Trans. Jpn. Soc. Mech. Eng. Ser A 62 604 2838 2845 1996
  • Young AA et al. Regional heterogeneity of function in nonischemic dilated cardiomyopathy Cardiovasc. Res. 49 2 308 318 2001

Others

  • Antiga L et al. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography IEEE Trans. Med. Imaging 22 5 674 684 2003
  • Augenstein KF et al. Magnetic resonance imaging and ventricle mechanics Philosoph. Trans. R. Soc. London A 359 1783 1263 1275 2001
  • Blanchard CH et al. Hybrid finite element-finite difference method for thermal analysis of blood vessels Int. J. Hyperthermia 16 4 341 353 2000
  • Cebral JR et al. Merging of intersecting triangulations for finite element modeling J. Biomech. 34 6 815 819 2001
  • Cheng LK Pullan AJ Towards non-invasive electrical heart imaging 1999 IEEE Eng. Med. Biol. Soc. Conf. 302 1999
  • Foutrakis GN et al. Construction of 3-D arterial volume meshes from magnetic resonance angiography Neurolog. Res. 18 4 354 360 1996
  • Green S Multilevel, subdivision-based, thin shell finite elements: development and an application to red blood cell modeling PhD Thesis University of Washington 2003
  • Greenberg NL et al. Significance of color Doppler M-mode scan line orientation in the non-invasive assessment of intraventricular pressure gradients 24th Ann. Meet. Comp. Cardiol. 605 608 1997 Lund
  • Holzapfel GA et al. A new axisymmetrical membrane element for anisotropic, finite strain analysis of arteries Commun. Numer. Meth. Eng. 12 8 507 517 1996
  • Hopenfeld , B . 2004 . Spherical harmonic-based finite element meshing scheme for modelling current flow within the heart . Med. Biol. Eng. Comput. , 42 ( 6 ) : 847 – 851 .
  • Hoppner JM et al. Open environment for reconstructing 2D images into 3D finite element models 23rd Ann. Meet. Comp. Cardiol. 429 432 1996 Indianapolis, IEEE
  • Hose DR et al. A thermal analogy for modelling drug elution from cardiovascular stents Comp. Meth. Biomech. Biomed. Eng. 7 5 257 264 2004
  • Hose DR et al. Fluid–solid interaction: benchmarking of an external coupling of ANSYS with CFX for cardiovascular applications J. Med. Eng. Tech. 27 1 23 31 2003
  • Huang Q Claydon FJ Comparison of bidomain and monodomain models in calculating the cardiac extracellular potentials induced by an external field 23rd Ann. Meet. Comp. Cardiol. 225 228 1996 Indianapolis, IEEE
  • Huang Q Claydon FJ Reducing mesh size in 3-D finite element modeling of the field induced cardiac transmembrane potential 16th South. Biomed. Eng. Conf. 370 373 1997 Biloxi
  • Liu , H and Shi , P . 2003 . Meshfree representation and computation: applications to cardiac motion analysis . Inf. Process. Med. Imaging , 18 : 560 – 572 .
  • Liu Y et al. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connections J. Biomech. Eng. ASME 126 5 594 603 2004
  • McCulloch AD Costa KD Three-dimensional finite element models from magnetic resonance images as a structural framework for continuum analysis of the heart Proc. SPIE Med. Imag. Conf. 1 9 1995 San Diego
  • McInerney , T and Terzopoulos , D . 1995 . Dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis . Comp. Med. Imag. Graph. , 19 ( 1 ) : 69 – 83 .
  • McKeighen , R . 2001 . Finite element simulation and modeling of 2-D arrays for 3-D ultrasonic imaging . IEEE Trans. Ultrason. Ferroelectr. , 48 ( 5 ) : 1395 – 1405 .
  • Messnarz B et al. A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns IEEE Trans. Biomed. Eng. 51 2 273 281 2004
  • Metaxas DN et al. Segmentation and analysis of 3D cardiac motion from tagged MRI images Ann. Int. Conf. IEEE Eng. Med. Biol. 122 125 2003 Cancun, IEEE
  • Nash MP et al. An experimental model to correlate simultaneous body surface and epicardial electropotential recordings in vivo Chaos Soliton Fractals 13 8 1735 1742 2002
  • Pham QC et al. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI ISPA 2001 250 254 2001 Pula, Croatia
  • Prakash , S and Ethier , CR . 2001 . Requirements for mesh resolution in 3D computational hemodynamics . J. Biomech. Eng. ASME , 123 ( 2 ) : 134 – 144 .
  • Rogers , JM and McCulloch , AD . 1994 . A collocation-Galerkin finite element model of cardiac action potential propagation . IEEE Trans. Biomed. Eng. , 41 ( 8 ) : 743 – 757 .
  • Rogers , JM and McCulloch , AD . 1994 . Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation . J. Cardiovasc. Electrophys. , 5 ( 6 ) : 496 – 509 .
  • Schulze-Bauer C et al. Assessment of plaque stability by means of high-resolution MRI and finite element analyses of local stresses and strains 2002 IEEE Symp. Biomed. Imaging 449 452 2002 Washington, IEEE
  • Sermesant M et al. Deformable biomechanical models: application to 4D cardiac image analysis Med. Image Anal. 7 4 475 488 2003
  • Sienz J et al. Computational modelling of 3D objects by using fitting techniques and subsequent mesh generation Comput. Struct. 78 1/3 397 413 2000
  • Skipa O et al. Simulation study of the effect of modelling errors on the solution of inverse cardiac source imaging problem using realistic source patterns Computers Cardiol. 28 41 44 2001 IEEE
  • Skipa O et al. Comparison of regularization techniques for the reconstruction of transmembrane potentials in the heart Biomedizin. Technik 47 Supp 246 248 2002
  • Smith NP et al. Generation of an anatomically based geometric coronary model Ann. Biomed. Eng. 28 1 14 25 2000
  • Srinivasan R Perucchio R Solid modeling reconstruction and finite element meshing of the embryonic heart for biomechanical studies 1995 Bioeng. Conf. BED 29 47 48 1995 Beever Creek, ASME
  • Stewart , SFC and Lyman , DJ . 2004 . Effects of an artery/vascular graft compliance mismatch on protein transport: a numerical study . Ann. Biomed. Eng. , 32 ( 7 ) : 991 – 1006 .
  • Sung D et al. Model based analysis of optically mapped epicardial activation patterns and conduction velocity Ann. Biomed. Eng. 28 9 1085 1092 2000
  • Tangwongsan C Measurement of in vivo endocardial and hepatic convective heat transfer coefficient PhD Thesis The University of Wisconsin, Madison 2003
  • Tangwongsan C et al. In vivo measurement of swine endocardial convective heat transfer coefficient IEEE Trans. Biomed. Eng. 51 8 1478 1486 2004
  • Usyk TP et al. Computational model of three-dimensional cardiac electromechanics Comput. Visual. Sci. 4 4 249 257 2002
  • Vadakkadath Meethal et al. Ca transients from Ca channel activity in rat cardiac myocytes reveal dynamics of dyad cleft and troponin C Ca binding Am. J. Physiol. Cell Physiol. 286 2 C302 C316 2004
  • Varahoor SS Biomechanical modeling and nonlinear finite element analysis of the embryonic heart during early cardiac morphogenesis PhD Thesis The University of Rochester 2001
  • Vigmond EJ et al. Computational techniques for solving the bidomain equations in three dimensions IEEE Trans. Biomed. Eng. 49 11 1260 1269 2002
  • White JA et al. An accurate, convective energy equation based automated meshing technique for analysis of blood vessels and tissues Int. J. Hyperthermia 16 2 145 158 2000
  • Wong A et al. Joint analysis of heart geometry and kinematics with spatiotemporal active region model Ann. Int. Conf. IEEE Eng. Med. Biol. 762 765 2003 Cancun, IEEE
  • Wu D et al. A simulation study of body surface Laplacian maps in a 3D realistically shaped inhomogeneous heart-torso model 19th Ann. Int. Conf. IEEE Eng. Med. Biol. 340 343 1997
  • Wu J et al. Vibration analysis of medical devices with a calibrated FEA model Comput. Struct. 80 12 1081 1086 2002
  • Young AA Cowan BR Frame-based 4D interactive modeling of heart motion IEEE Nonrigid Articul. Motion Worksh. 128 135 1997 San Juan, IEEE
  • Young , AA . 1999 . Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images . Med. Image Anal. , 3 ( 4 ) : 361 – 372 .
  • Zara JM et al. Micromachine intracardiac ultrasound scanner fabricated with integrated circuit technology 2000 IEEE Ultrason. Symp. 931 934 2000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.