174
Views
17
CrossRef citations to date
0
Altmetric
Articles

Quantification of trabecular bone microdamage using the virtual internal bond model and the individual trabeculae segmentation technique

, , &
Pages 605-615 | Received 08 May 2009, Accepted 09 Oct 2009, Published online: 14 Jan 2010

References

  • Bevill , G , Eswaran , SK , Gupta , A , Papadopoulos , P and Keaveny , TM . 2006 . Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone . Bone , 39 ( 6 ) : 1218 – 1225 .
  • Borah , B , Dufresne , TE , Cockman , MD , Gross , GJ , Sod , EW , Myers , WR , Combs , KS , Higgins , RE , Pierce , SA and Stevens , ML . 2000 . Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling . J Bone Miner Res , 15 ( 9 ) : 1786 – 1797 .
  • Burr , D . 2003 . Microdamage and bone strength . Osteoporos Int , 14 : S67 – S72 .
  • Burr , DB , Forwood , MR , Fyhrie , DP , Martin , B , Schaffler , MB and Turner , CH . 1997 . Bone microdamage acid skeletal fragility in osteoporotic and stress fractures . J Bone Miner Res , 12 ( 1 ) : 6 – 15 .
  • Charras , GT and Guldberg , RE . 2000 . Improving the local solution accuracy of large-scale digital image-based finite element analyses . J Biomech , 33 ( 2 ) : 255 – 259 .
  • Gao , HJ and Ji , BH . 2003 . Modeling fracture in nanomaterials via a virtual internal bond method . Eng Fract Mech , 70 ( 14 ) : 1777 – 1791 .
  • Gao , HJ and Klein , P . 1998 . Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds . J Mech Phys Solids , 46 ( 2 ) : 187 – 218 .
  • Gao , HJ , Ji , BH , Jager , IL and Fratzl , P . 2003 . Materials become insensitive to flaws at nanoscale: lessons from nature . Proc Natl Acad Sci U S A , 100 ( 10 ) : 5597 – 5600 .
  • Guldberg , RE , Hollister , SJ and Charras , GT . 1998 . The accuracy of digital image-based finite element models . J Biomech Eng-Trans Asme , 120 ( 2 ) : 289 – 295 .
  • Guo , XDE , McMahon , TA , Keaveny , TM , Hayes , WC and Gibson , LJ . 1994 . Finite-element modeling of damage accumulation in trabecular bone under cyclic loading . J Biomech , 27 ( 2 ) : 145 – 155 .
  • Hou , FJ , Lang , SM , Hoshaw , SJ , Reimann , DA and Fyhrie , DP . 1998 . Human vertebral body apparent and hard tissue stiffness . J Biomech , 31 ( 11 ) : 1009 – 1015 . Available: http://tahoe.ca.sandia.gov/
  • Jensen , KS , Mosekilde , L and Mosekilde , L . 1990 . A model of vertebral trabecular bone architecture and its mechanical-properties . Bone , 11 ( 6 ) : 417 – 423 .
  • Ji , BH and Gao , HJ . 2004a . Mechanical properties of nanostructure of biological materials . J Mech Phys Solids , 52 ( 9 ) : 1963 – 1990 .
  • Ji , BH and Gao , HJ . 2004b . A study of fracture mechanisms in biological nano-composites via the virtual internal bond model . Mater Sci Eng A-Struct Mater Prop Microstruct Process , 366 ( 1 ) : 96 – 103 .
  • Keaveny , TM , Guo , XE , Wachtel , EF , Mcmahon , TA and Hayes , WC . 1994a . Trabecular bone exhibits fully linear elastic behavior and yields at low strains . J Biomech , 27 ( 9 ) : 1127 – & .
  • Keaveny , TM , Wachtel , EF , Ford , CM and Hayes , WC . 1994b . Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus . J Biomech , 27 ( 9 ) : 1137 – 1146 .
  • Keaveny , TM , Wachtel , EF , Guo , XE and Hayes , WC . 1994c . Mechanical-behavior of damaged trabecular bone . J Biomech , 27 ( 11 ) : 1309 – 1318 .
  • Kim , C , Zhang , H , Mikhail , G , von Stechow , D , Müller , R , Kim , H and Guo , X . 2007 . Effects of thresholding techniques on microCT-based finite element models of trabecular bone . J Biomech Eng , 129 ( 4 ) : 481 – 486 .
  • Klein , P and Gao , H . 1998 . Crack nucleation and growth as strain localization in a virtual-bond continuum . Eng Fract Mech , 61 ( 1 ) : 21 – 48 .
  • Kosmopoulos , V , Schizas , C and Keller , TS . 2008 . Modeling the onset and propagation of bone microdamage during low-cycle trabecular fatigue . J Biomech , 41 ( 3 ) : 515 – 522 .
  • Kosmopoulos , V and Keller , TS . 2008 . Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model . Med Eng Phys , 30 ( 6 ) : 725 – 732 .
  • Liu , XG , Wang , XA and Niebur , GL . 2003 . Effects of damage on the orthotropic material symmetry of bovine tibial trabecular bone . J Biomech , 36 ( 12 ) : 1753 – 1759 .
  • Liu , XS , Sajda , P , Saha , PK , Wehrli , FW and Guo , XE . 2006 . Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone . J Bone Miner Res , 21 ( 10 ) : 1608 – 1617 .
  • Liu , XS , Sajda , P , Saha , PK , Wehrli , FW , Bevill , G , Keaveny , TM and Guo , XE . 2008 . Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone . J Bone Miner Res , 23 ( 2 ) : 223 – 235 .
  • Liu , XS , Bevill , G , Keaveny , TM , Sajda , P and Guo , XE . 2009 . Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods . J Biomech , 42 ( 3 ) : 249 – 256 .
  • Makiyama , AM , Vajjhala , S and Gibson , L . 2002 . J. Analysis of crack growth in a 3D voronoi structure: a model for fatigue in low density trabecular bone . J Biomech Eng Trans Asme , 124 ( 5 ) : 512 – 520 .
  • Moore , TLA and Gibson , LJ . 2001 . Modeling modulus reduction in bovine trabecular bone damaged in compression . J Biomech Eng Trans Asme , 123 ( 6 ) : 613 – 622 .
  • Moore , TLA and Gibson , LJ . 2002 . Microdamage accumulation in bovine trabecular bone in uniaxial compression . J Biomech Eng Trans Asme , 124 ( 1 ) : 63 – 71 .
  • Morgan , EF and Keaveny , TM . 2001 . Dependence of yield strain of human trabecular bone on anatomic site . J Biomech , 34 ( 5 ) : 569 – 577 .
  • Mori , S and Burr , DB . 1993 . Increased intracortical remodeling following fatigue damage . Bone , 14 ( 2 ) : 103 – 109 .
  • Nagaraja , S , Couse , TL and Guldberg , RE . 2005 . Trabecular bone microdamage and microstructural stresses under uniaxial compression . J Biomech , 38 ( 4 ) : 707 – 716 .
  • Niebur , GL , Feldstein , MJ , Yuen , JC , Chen , TJ and Keaveny , TM . 2000 . High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone . J Biomech , 33 ( 12 ) : 1575 – 1583 .
  • Pothuaud , L , Van Rietbergen , B , Mosekilde , L , Beuf , O , Levitz , P , Benhamou , CL and Majumdar , S . 2002 . Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone . J Biomech , 35 ( 8 ) : 1091 – 1099 .
  • Saha , PK , Chaudhuri , BB , Dutta , D and Majumder , DD . 1997 . A new shape preserving parallel thinning algorithm for 3D digital images . Pattern Recognit , 30 ( 12 ) : 1939 – 1955 .
  • Saha , PK and Chaudhuri , BB . 1996 . 3D digital topology under binary transformation with applications . Comput Vis Image Underst , 63 ( 3 ) : 418 – 429 .
  • Schaffner , G , Guo , XDE , Silva , MJ and Gibson , LJ . 2000 . Modelling fatigue damage accumulation in two-dimensional voronoi honeycombs . Int J Mech Sci , 42 ( 4 ) : 645 – 656 .
  • Seeman , E . 2008 . Bone quality: the material and structural basis of bone strength . J Bone Miner Metab , 26 ( 1 ) : 1 – 8 .
  • Stolken , JS and Kinney , JH . 2003 . On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure . Bone , 33 ( 4 ) : 494 – 504 .
  • Tadmor , EB , Ortiz , M and Phillips , R . 1996 . Quasicontinuum analysis of defects in solids . Philos Mag A: Phys Condens Matter Struct Defects Mech Properties , 73 ( 6 ) : 1529 – 1563 .
  • Thurner , PJ , Wyss , P , Voide , R , Stauber , M and Stampanoni , M . 2006 . Sennhauser U and Muller R . Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone , 39 ( 2 ) : 289 – 299 .
  • Vanrietbergen , B , Weinans , H , Huiskes , R and Odgaard , A . 1995 . A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models . J Biomech , 28 ( 1 ) : 69 – & .
  • Wachtel , EF and Keaveny , TM . 1997 . Dependence of trabecular damage on mechanical strain . J Orthop Res , 15 ( 5 ) : 781 – 787 .
  • Wang , XA and Niebur , GL . 2006 . Microdamage propagation in trabecular bone due to changes in loading mode . J Biomech , 39 ( 5 ) : 781 – 790 .
  • Yeh , OC and Keaveny , TM . 2001 . Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone . J Orthop Res , 19 ( 6 ) : 1001 – 1007 .
  • Yeni , YN and Fyhrie , DP . 2001 . Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions . J Biomech , 34 ( 12 ) : 1649 – 1654 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.