380
Views
9
CrossRef citations to date
0
Altmetric
Article

A comparison of cartilage stress-relaxation models in unconfined compression: QLV and stretched exponential in combination with fluid flow

&
Pages 565-576 | Received 07 Aug 2009, Accepted 03 Oct 2011, Published online: 08 Dec 2011

REFERENCES

  • AlvarezF, AlegriaA, ColmeneroJ. 1991. Relationship between the time-domain Kohlraush-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Phys Rev B. 44(14):7306–7312.
  • ArmstrongCG, LaiWM, MowVC. 1984. An analysis of the unconfined compression of articular cartilage. J Biomech Eng. 106(2):165–173.
  • BasaloIM, MauckRL, KellyTA, NicollSB, ChenFH, HungCT, AteshianGA. 2004. Cartilage interstitial fluid load support in unconfined compression following enzymatic digestion. J Biomech Eng. 126(6):779–786.
  • BevingtonPR, RobinsonDK. 2002. Data reduction and error analysis for the physical sciences. Columbus, OH: McGraw-Hill, Inc.
  • BoenderCGE, RomeijnHE. 1995. Stochastic methods. In: HorstR, PardalosPM, editors. Handbook of global optimization. Dordrecht: Kluwer.
  • BrownTD, SingermanRJ. 1986. Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. J Biomech. 19(8):597–605.
  • ChanDD, NeuCP, HullML. 2009. Articular cartilage deformation determined in an intact tibiofemoral joint by displacement-encoded imaging. Magn Reson Med. 61(4):989–993.
  • CodyDD, GrossGJ, HouFJ, SpencerHJ, GoldsteinSA, FyhrieDP. 1999. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 32(10):1013–1020.
  • CunninghamJP, YuBM, GiljaV, RyuSI, ShenoyKV. 2008. Toward optimal target placement for neural prosthetic devices. J Neurophysiol. 100(6):3445–3457.
  • de GennesP. 2002. Relaxation anomalies in linear polymer melts. Macromolecules. 35:3785–3786.
  • DeanD, HanL, GrodzinskyAJ, OrtizC. 2006. Compressive nanomechanics of opposing aggrecan macromolecules. J Biomech. 39(14):2555–2565.
  • DiSilvestroMR, SuhJK. 2002. Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration. Ann Biomed Eng. 30(6):792–800.
  • DoiM. 1995. An introduction to polymer physics. Oxford: Oxford University Press.
  • DonzelliPS, SpilkerRL, AteshianGA, MowVC. 1999. Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. J Biomech. 32(10):1037–1047.
  • DortmansLJ, SaurenAA, RousseauEP. 1984. Parameter estimation using the quasi-linear viscoelastic model proposed by Fung. J Biomech Eng. 106(3):198–203.
  • EcksteinF, HudelmaierM, PutzR. 2006. The effects of exercise on human articular cartilage. J Anat. 208(4):491–512.
  • FedericoS, GrilloA, La RosaG, GiaquintaG, HerzogW. 2005. A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J Biomech. 38(10):2008–2018.
  • FolmanY, WoskJ, VoloshinA, LibertyS. 1986. Cyclic impacts on heel strike: a possible biomechanical factor in the etiology of degenerative disease of the human locomotor system. Arch Orthop Trauma Surg. 104(6):363–365.
  • FortinM, SoulhatJ, Shirazi-AdlA, HunzikerEB, BuschmannMD. 2000. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J Biomech Eng. 122(2):189–195.
  • FrankEH, GrodzinskyAJ. 1987. Cartilage electromechanics – I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech. 20(6):615–627.
  • FrankEH, GrodzinskyAJ, KoobTJ, EyreDR. 1987. Streaming potentials: a sensitive index of enzymatic degradation in articular cartilage. J Orthop Res. 5(4):497–508.
  • FungY. 1993. Biomechanics: mechanical properties of living tissues. 2nd ed.Philadelphia, PA, USA: Springer Verlag. p. 261–271.
  • FyhrieDP, BaroneJR. 2003. Polymer dynamics as a mechanistic model for the flow-independent viscoelasticity of cartilage. J Biomech Eng. 125(5):578–584.
  • GarciaJJ, AltieroNJ, HautRC. 1998. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J Biomech Eng. 120(5):608–613.
  • GarciaJJ, AltieroNJ, HautRC. 2000. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model. J Biomech Eng. 122(1):1–8.
  • GrodzinskyAJ, LipshitzH, GlimcherMJ. 1978. Electromechanical properties of articular cartilage during compression and stress relaxation. Nature. 275(5679):448–450.
  • HayesWC, BodineAJ. 1978. Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech. 11(8–9):407–419.
  • HeinegardD. 1977. Polydispersity of cartilage proteoglycans. Structural variations with size and buoyant density of the molecules. J Biol Chem. 252(6):1980–1989.
  • HolmesMH. 1986. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J Biomech Eng. 108(4):372–381.
  • HuangCY, MowVC, AteshianGA. 2001. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J Biomech Eng. 123(5):410–417.
  • HuangCY, SoltzMA, KopaczM, MowVC, AteshianGA. 2003. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J Biomech Eng. 125(1):84–93.
  • JuneRK, BaroneJR, FyhrieDP. 2006. Cartilage stress-relaxation described by polymer dynamics. In: Proceedings of the Annual Meeting of the Orthopaedic Research Society, Chicago, IL.
  • JuneRK, BaroneJR, FyhrieDP. 2007. The temperature-dependence of cartilage stress-relaxation rate. In: Proceedings of the Annual Meeting of the Orthopaedic Research Society, San Diego, CA.
  • JuneRK, FyhrieDP. 2008. Molecular NMR T2 values can predict cartilage stress-relaxation parameters. Biochem Biophys Res Commun. 377(1):57–61.
  • JuneRK, LyS, FyhrieDP. 2008. Cartilage stress-relaxation proceeds slower at higher compressive strains. Arch Biochem Biophys.483(1):75–80.
  • JuneRK, MejiaKL, BaroneJR, FyhrieDP. 2008. Cartilage stress-relaxation is affected by both the charge concentration and valence of solution cations. Osteoarthr Cartilage. 17(5):669–676.
  • KhalafiA, SchmidTM, NeuC, ReddiAH. 2007. Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res. 25(3):293–303.
  • KimYJ, BonassarLJ, GrodzinskyAJ. 1995. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech. 28(9):1055–1066.
  • KrishnanR, KopaczM, AteshianGA. 2004. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res. 22(3):565–570.
  • KvalsethTO. 1985. Cautionary note about R2. Am Stat. 39(4):279–285.
  • LiLP, HerzogW. 2004. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology. 41(3–4):181–194.
  • LindseyCP, PattersonGD. 1980. Detailed comparison of the Williams-Watts and Cole-Davidson functions. J Chem Phys. 73(7):3348–3357.
  • MakAF. 1986. The apparent viscoelastic behavior of articular cartilage – the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng. 108(2):123–130.
  • MankinHJ, MowVC, BuckwalterJA, IannottiJP, RatcliffeA. 2000. Articular cartilage structure, composition, and function. In: BuckwalterJA, EinhornTA, SimonSR, editors. Orthopaedic basic science: biology and biomechanics of the musculoskeletal system. 2nd ed.Rosemont, IL, USA: American Academy of Orthopaedic Surgeons. p. 443–470.
  • MansourJM, MowVC. 1976. The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg Am. 58(4):509–516.
  • McCutchenCW. 1962. The frictional properties of animal joints. Wear. 5:1–17.
  • MortJS, BillingtonCJ. 2001. Articular cartilage and changes in arthritis: matrix degradation. Arthritis Res. 3(6):337–341.
  • MowVC, KueiSC, LaiWM, ArmstrongCG. 1980. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng. 102(1):73–84.
  • MowVC, RatcliffeA. 1997. Structure and function of articular cartilage and meniscus. In: MowVC, HayesWC, editors. Basic orthopaedic biomechanics. 2nd ed.Philadelphia, PA: Lippincott-Raven Publishers. p. 113–177.
  • MyersBS, McElhaneyJH, DohertyBJ. 1991. The viscoelastic responses of the human cervical spine in torsion: experimental limitations of quasi-linear theory, and a method for reducing these effects. J Biomech. 24(9):811–817.
  • NeterJ, KutnerM, NachtsheimJ, WassermanW. 1996. Applied linear statistical models. 4th ed.Boston, MA: WCB/McGraw-Hill.
  • NigulI, NigulU. 1987. On algorithms of evaluation of Fung's relaxation function parameters. J Biomech. 20(4):343–352.
  • PapagiannopoulosA, WaighTA, HardinghamTE. 2008. The viscoelasticity of self-assembled proteoglycan combs. R Soc Chem Faraday Discuss. 139(1):1–22.
  • ParkS, KrishnanR, NicollSB, AteshianGA. 2003. Cartilage interstitial fluid load support in unconfined compression. J Biomech. 36(12):1785–1796.
  • SanderEA, NaumanEA. 2003. Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit Rev Biomed Eng. 31(1–2):1–26.
  • SarverJJ, ElliottDM. 2005. Mechanical differences between lumbar and tail discs in the mouse. J Orthop Res. 23(1):150–155.
  • SasakiN, NakayamaY, YoshikawaM, EnyoA. 1993. Stress relaxation function of bone and bone collagen. J Biomech. 26(12):1369–1376.
  • SchmidtTA, GastelumNS, NguyenQT, SchumacherBL, SahRL. 2007. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 56(3):882–891.
  • SchwefelH. 1995. Evolution and optimum seeking. New York, NY: John Wiley & Sons, Inc.
  • SettonLA, ZhuW, MowVC. 1993. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech. 26(4–5):581–592.
  • SoltzMA, AteshianGA. 1998. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech. 31(10):927–934.
  • SoltzMA, AteshianGA. 2000a. A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng. 122(6):576–586.
  • SoltzMA, AteshianGA. 2000b. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann Biomed Eng. 28(2):150–159.
  • ThomasGC, AsanbaevaA, VenaP, SahRL, KlischSM. 2009. A nonlinear constituent based viscoelastic model for articular cartilage and analysis of tissue remodeling due to altered glycosaminoglycan-collagen interactions. J Biomech Eng. 131(10):101002.
  • VashishthD, GibsonGJ, KhouryJI, SchafflerMB, KimuraJ, FyhrieDP. 2001. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 28(2):195–201.
  • WachtelE, MaroudasA. 1998. The effects of pH and ionic strength on intrafibrillar hydration in articular cartilage. Biochim Biophys Acta. 1381(1):37–48.
  • WilsonW, HuygheJM, van DonkelaarCC. 2007. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech Model Mechanobiol. 6(1–2):43–53.
  • WilsonW, van DonkelaarCC, van RietbergenB, ItoK, HuiskesR. 2004. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech. 37(3):357–366.
  • WongM, PonticielloM, KovanenV, JurvelinJS. 2000. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech. 33(9):1049–1054.
  • WuJZ, HerzogW. 2000. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann Biomed Eng. 28(3):318–330.
  • ZhuW, MowVC, RosenbergLC, TangLH. 1994. Determination of kinetic changes of aggrecan-hyaluronan interactions in solution from its rheological properties. J Biomech. 27(5):571–579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.