501
Views
6
CrossRef citations to date
0
Altmetric
Article

A femoral model with all relevant muscles and hip capsule ligaments

, , , , &
Pages 669-677 | Received 17 Apr 2011, Accepted 11 Oct 2011, Published online: 08 Dec 2011

REFERENCES

  • AamodtA, Lund-LarsenJ, EineJ, AndersenE, BenumP, HusbyOS. 1997. In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur. J Orthop Res. 15(6):927–931.
  • AugatP, BurgerJ, SchorlemmerS, HenkeT, PerausM, ClaesL. 2003. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 21(6):1011–1017.
  • BergmannG. 2001. HIP98. Berlin: Free University Berlin.
  • BergmannG, DeuretzbacherG, HellerM, GraichenF, RohlmannA, StraussJ, DudaGN. 2001. Hip contact forces and gait patterns from routine activities. J Biomech. 34(7):859–871.
  • BergmannG, GraichenF, RohlmannA. 1993. Hip joint loading during walking and running, measured in two patients. J Biomech. 26(8):969–990.
  • CowinSC. 1985. The relationship between the elasticity tensor and the fabric tensor. Mech Mater. 4:137–147.
  • CristofoliniL, DudaG, PrendergastPJ. 2006. In-vitro preclinical assessment of hip stem loosening. J Biomech. 39(Suppl. 1):S126.
  • DavidA, von der HeydeD, PommerA. 2000. Therapeutic possibilities in trochanteric fractures. Safe-fast-stable. Orthopade. 29(4):294–301.
  • DudaGN. 2001. Muskuloskelettale Belastungen: Beitrag zu den mechanischen Rahmenbedingungen der Frakturheilung. Berlin: Medizinischen Fakultät Charité der Humboldt-Universität zu Berlin.
  • DudaGN, HellerM, AlbingerJ, SchulzO, SchneiderE, ClaesL. 1998. Influence of muscle forces on femoral strain distribution. J Biomech. 31(9):841–846.
  • DudaGN, SchneiderE, ChaoEY. 1997. Internal forces and moments in the femur during walking. J Biomech. 30(9):933–941.
  • HellerMO, BergmannG, KassiJP, ClaesL, HaasNP, DudaGN. 2005. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech. 38(5):1155–1163.
  • HelwigP, FaustG, HindenlangU, KroplinB, EingartnerC. 2006. Finite element analysis of a bone-implant system with the proximal femur nail. Technol Health Care. 14(4–5):411–419.
  • HelwigP, FaustG, HindenlangU, SuckelA, KroplinB, SudkampN. 2006. Biomechanical evaluation of the gliding nail in trochanteric fractures. Z Orthop Ihre Grenzgeb. 144(6):594–601.
  • Huber-WagnerS. 2002. Spannungsoptische Untersuchung verschiedener Stabilisierungsverfahren (Dynamische Hüftschraube, γ-Nagel, Proximaler Femur-Nagel) bei pertrochanteren Femurfrakturen. München: Ludwigs-Maximilians-Universität.
  • LindequistS, WredmarkT, ErikssonSA, SamnegardE. 1993. Screw positions in femoral neck fractures. Comparison of two different screw positions in cadavers. Acta Orthop Scand. 64(1):67–70.
  • MüllerM, NazarinS, KochP, SchatzkerJ. 1990. The comprehensive classification of fractures of long bones. Berlin, Heidelberg, New York: Springer.
  • PauwelsF. 1935. Der Schenkelhalsbruch - Ein mechanisches Problem. Stuttgart: Enke-Verlag.
  • PauwelsF. 1973. Atlas of the biomechanics of healthy and diseased hips. Berlin, Heidelberg, New York: Springer-Verlag.
  • PfirrmannCW, NotzliHP, DoraC, HodlerJ, ZanettiM. 2005. Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients. Radiology. 235(3):969–976.
  • PolgarK, GillHS, VicecontiM, MurrayDW, O'ConnorJJ. 2003a. Development and numerical validation of a finite element model of the muscle standardized femur. Proceed Inst Mech Eng. 217(3):165–172.
  • PolgarK, GillHS, VicecontiM, MurrayDW, O'ConnorJJ. 2003b. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Proceed Inst Mech Eng. 217(3):173–189.
  • SchärerC. 2005. Muskuloskeletale Belastung und Beanspruchung des Femurs während des Gangzyklus: Entwicklung und Vergleich unterschiedlicher Belastungs und Materialmodelle. Zürich: Eidgenössische Technische Hochschule Zürich.
  • SpeirsAD, HellerMO, DudaGN, TaylorWR. 2007. Physiologically based boundary conditions in finite element modelling. J Biomech. 40(10):2318–2323.
  • SteindlA, SchörghuberL. 2000. Treatment of per- and subtrochanteric fractures by Gliding Nail and PFN – early results and analysis of problems. Osteosynthese Int. 8(8):86–94.
  • SuckelAA, DietzK, WuelkerN, HelwigP. 2007. Evaluation of complications of three different types of proximal extra-articular femur fractures: differences in complications, age, sex and surviving rates. Int Orthop. 31(5): 689–695.
  • SuckelA, HelwigP, SchirmerA, GarbrechtM, MockeU. 2003. Complication rate in the treatment of inter- and subtrochanteric femur fractures with two intramedullary osteosyntheses. Comparison of a conventional nailing system and a rotation stable fixation of the head-neck-fragment, gammanail and glidingnail. Zentralblatt fur Chirurgie. 128(3):212–217.
  • TaylorME, TannerKE, FreemanMA, YettramAL. 1996. Stress and strain distribution within the intact femur: compression or bending?Med Eng Phys. 18(2):122–131.
  • van RietbergenB, OdgaardA, KabelJ, HuiskesR. 1996. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech. 29(12):1653–1657.
  • van RietbergenB, WeinansH, HuiskesR, OdgaardA. 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech. 28(1):69–81.
  • van RietbergenB, WeinansH, HuiskesR. 1997. Prospects of computer models for the prediction of osteoporotic bone fracture risk. Stud Health Technol Inform. 40:25–32.
  • WangCJ, BrownCJ, YettramAL, ProcterP. 2000. Intramedullary femoral nails: one or two lag screws? A preliminary study. Med Eng Phys. 22(9):613–624.
  • Werner-TutschkuW, LajtaiG, SchmiedhuberG, LangT, PirklC, OrthnerE. 2002. Intra- and perioperative complications in the stabilization of per- and subtrochanteric femoral fractures by means of PFN. Unfallchirurg. 105(10):881–885.
  • YangG, KabelJ, van RietbergenB, OdgaardA, HuiskesR, CowinSC. 1998. The anisotropic Hooke's law for cancellous bone and wood. J Elast. 53(2):125–146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.