245
Views
7
CrossRef citations to date
0
Altmetric
Article

Simulation of the behaviour of the L1 vertebra for different material properties and loading conditions

, &
Pages 736-746 | Received 19 Jun 2011, Accepted 27 Oct 2011, Published online: 08 Dec 2011

REFERENCES

  • BerksonM, NachemsonA, SchultzA. 1979. Mechanical properties of human lumbar spine motion segments. Part II: responses in compression and shear; influence of gross morphology. J Biomech Eng. 101(1):53–57.
  • BuckleyJM, LooK, MotherwayJ. 2007. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone. 40(3):767–774.
  • BursteinAH, ReillyDT, MartensM. 1976. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 58(1):82–86.
  • CauleyJA, ZmudaJM, WisniewskiSR, KrishnaswamiS, PalermoL, StoneKL, BlackDM, NevittMC. 2004. Bone mineral density and prevalent vertebral fractures in men and women. Osteoporos Int. 15(1):32–37.
  • CendreE, MittonD, RouxJP, ArlotME, DuboeufF, Burt-PichatB, RumelhartC, PeixG, MeunierPJ. 1999. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics. Osteoporos Int. 10(5):353–360.
  • ChazalJ, TanguyA, BourgesM, GaurelG, EscandeG, GuillotM, VanneuvilleG. 1985. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 18(3):167–176.
  • ChevalierY, QuekE, BorahB, GrossG, StewartJ, LangT, ZyssetP. 2010. Biomechanical effects of teriparatide in women with osteoporosis treated previously with alendronate and risedronate: results from quantitative computed tomography-based finite element analysis of the vertebral body. Bone. 46(1):41–48.
  • CooperC, AtkinsonEJ, O'FallonWM, Melton III, JL. 1992. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 7(2):221–227.
  • CrawfordRP, CannCE, KeavenyTM. 2003. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 33(4):744–750.
  • FaulknerKG, CannCE, HasegawaBH. 1991. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 179(3):669–674.
  • FreiH, OxlandTR, RathonyiGC, NolteL. 2001. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine. 26(19):2080–2089.
  • GalanteJ, RostokerW, RayRD. 1970. Physical properties of trabecular bone. Calcif Tissue Res. 5(3):236–246.
  • GoelVK, ClausenJD. 1998. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine. 23(6):684–691.
  • GoelVK, GoyalS, ClarkC, NishiyamaK, NyeT. 1985. Kinematics of the whole lumbar spine. Effect of discectomy. Spine. 10(6):543–554.
  • GoelVK, ParkH, KongW. 1994. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. J Biomech Eng. 116(4):377–383.
  • GustafssonL, JacobsonB, KusoffskyL. 1974. X-ray spectrophotometry for bone-mineral determinations. Med Biol Eng. 12(1):113–119.
  • HeiniPF, BerlemannU, KaufmannM, LippunerK, FankhauserC, van LanduytP. 2001. Augmentation of mechanical properties in osteoporotic vertebral bones – a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J. 10(2):164–171.
  • ImaiK, OhnishiI, YamamotoS, NakamuraK. 2008. In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine. 33(1):27–32.
  • KanisJA, BorgstromF, De LaetC, JohanssonH, JohnellO, JonssonB, OdenA, ZethraeusN, PflegerB, KhaltaevN. 2005. Assessment of fracture risk. Osteoporos Int. 16(6):581–589.
  • KellerTS, KosmopoulosV, LiebermanIH. 2005. Vertebroplasty and kyphoplasty affect vertebral motion segment stiffness and stress distributions: a microstructural finite-element study. Spine. 30(11):1258–1265.
  • KopperdahlDL, PearlmanJL, KeavenyTM. 2000. Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res. 18(5):685–690.
  • LiebschnerMA, KopperdahlDL, RosenbergWS, KeavenyT. 2003. Finite element modeling of the human thoracolumbar spine. Spine. 28(6):559–565.
  • LiebschnerMA, RosenbergWS, KeavenyTM. 2001. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine. 26(14):1547–1554.
  • MeltonLJ, III, KanSH, FryeMA, WahnerHW, O'FallonWM, RiggsBL. 1989. Epidemiology of vertebral fractures in women. Am J Epidemiol. 129(5):1000–1011.
  • MorganEF, BayraktarHH, KeavenyTM. 2003. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 36(7):897–904.
  • MorganEF, KeavenyTM. 2001. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 34(5):569–577.
  • NatarajanRN, AnderssonGB. 1999. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine. 24(18):1873–1881.
  • PanjabiMM, KragMH, ChungTQ. 1984. Effects of disc injury on mechanical behavior of the human spine. Spine. 9(7):707–713.
  • PanjabiMM, OxlandTR, YamamotoI, CriscoJJ. 1994. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am. 76(3):413–424.
  • PanzerMB, CroninDS. 2009. C4–C5 segment finite element model development, validation, and load-sharing investigation. J Biomech. 42(4):480–490.
  • PintarFA, YoganandanN, MyersT, ElhagediabA, Sances A, Jr. 1992. Biomechanical properties of human lumbar spine ligaments. J Biomech. 25(11):1351–1356.
  • PolikeitA, NolteLP, FergusonSJ. 2003. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine. 28(10):991–996.
  • QiuTX, TanKW, LeeVS, TeoEC. 2006. Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys. 28(7):656–664.
  • SchultzAB, WarwickDN, BerksonM, NachemsonAL. 1979. Mechanical properties of human lumbar spine motion segments. Part I: responses in flexion, extension, lateral bending, and torsion. J Biomech Eng. 101(1):46–52.
  • SharmaM, LangranaNA, RodriguezJ. 1995. Role of ligaments and facets in lumbar spinal stability. Spine. 20(8):887–900.
  • Shirazi-AdlA, AhmedAM, ShrivastavaSC. 1986. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech. 19(4):331–350.
  • SilvaMJ, KeavenyTM, HayesWC. 1998. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res. 16(3):300–308.
  • TostesonAN, HammondCS. 2002. Quality-of-life assessment in osteoporosis: health-status and preference-based measures. Pharmacoeconomics. 20(5):289–303.
  • TschirhartCE, RothSE, WhyneCM. 2005. Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: effects of cement distribution patterns and volume. J Biomech. 38(8):1582–1590.
  • UchiyamaT, TanizawaT, MuramatsuH, EndoN, TakahashiHE, HaraT. 1999. Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties. Bone. 25(4):487–491.
  • UenoK, LiuYK. 1987. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J Biomech Eng. 109(3):200–209.
  • U.S. Department of Health and Human Services. 2004. Health and osteoporosis: a report of the surgeon general. Rockville, MD: Department of Health and Human Services, Office of the Surgeon General.
  • VillarragaML, BellezzaAJ, HarriganTP, CriptonPA, KurtzSM, EdidinAA. 2005. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech. 18(1):84–91.
  • WhiteA, PanjabiM. 1990. Biomechanics of the spine. 2nd ed. Philadelphia, PA: JB Lippincott.
  • ZanderT, RohlmannA, KlocknerC, BergmannG. 2002. Effect of bone graft characteristics on the mechanical behavior of the lumbar spine. J Biomech. 35(4):491–497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.