409
Views
16
CrossRef citations to date
0
Altmetric
Articles

On the interrelationship of permeability and structural parameters of vertebral trabecular bone: a parametric computational study

&
Pages 908-922 | Received 05 Apr 2011, Accepted 21 Nov 2011, Published online: 30 Jan 2012

REFERENCES

  • ArramonYP, NaumanEA. 2001. The intrinsic permeability of cancellous bone. In: CowinS, TelegaJ, editors. Bone mechanics handbook. Boca Raton: CRC Press. p. 25.1–25.17 Chapter Flow of Fluids in Bone.
  • BaroudG, FalkR, CrookshankM, SponagelS, SteffenT. 2004. Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration. J Biomech. 37(2):189–196.
  • BaroudG, CrookshankM, BohnerM. 2006. High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine (Phila Pa 1976). 31(22):2562–2568.
  • BearJ. 1972. Dynamics of fluids in porous media. New York: Elsevier.
  • BeaudoinAJ, MihalkoWM, KrauseWR. 1991. Finite element modelling of polymethylmethacrylate flow through cancellous bone. J Biomech. 24(2):127–136.
  • BohnerM, GasserB, BaroudG, HeiniP. 2003. Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials. 24(16):2721–2730.
  • CowinSC. 1999. Bone poroelasticity. J Biomech. 32(3):217–238.
  • DaganD, Be'eryM, GefenA. 2004. Single-trabecula building block for large-scale finite element models of cancellous bone. Med Biol Eng Comput.42(4):549–556.
  • DarcyH. 1856. Les fontaines publiques de la ville de Dijon. Paris: Dalmont. p. 647.
  • DillamanRM, RoerRD, GayDM. 1991. Fluid movement in bone: theoretical and empirical. J Biomech. 24(Supplement 1):163–177.
  • DullienF. 1979. Porous media: fluid transport and pore structure. New York: Academic press.
  • FrittonSP, WeinbaumS. 2009. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech.41:347–374.
  • FrostH. 1988. Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int. 42(3):145–156.
  • GibsonLJ. 1985. The mechanical behaviour of cancellous bone. J Biomech. 18(5):317–328.
  • GoldsteinSA, GouletR, McCubbreyD. 1993. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int. 53(Suppl. 1):S127–S132, discussion S132–3.
  • GrimmMJ, WilliamsJL. 1997. Measurements of permeability in human calcaneal trabecular bone. J Biomech. 30(7):743–745.
  • GuoX, KimC. 2002. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone. 30(2):404–411.
  • HuiP, LeungP, SherA. 1996. Fluid conductance of cancellous bone graft as a predictor for graft–host interface healing. J Biomech. 29(1):123–132.
  • HulmePA, BoydSK, FergusonSJ. 2007. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone. 41(6):946–957.
  • JensenK, MosekildeL, MosekildeL. 1990. A model of vertebral trabecular bone architecture and its mechanical properties. Bone. 11(6):417–423.
  • KabelJ, OdgaardA, Van RietbergenB, HuiskesR. 1999b. Connectivity and the elastic properties of cancellous bone. Bone. 24(2):115–120.
  • KabelJ, Van RietbergenB, OdgaardA, HuiskesR. 1999a. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone. 25(4):481–486.
  • KimHS, Al-HassaniSTS. 2002. A morphological model of vertebral trabecular bone. J Biomech. 35(8):1101–1114.
  • KohlesSS, RobertsJB. 2002. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties. J Biomech Eng. 124(5):521–526.
  • KohlesSS, RobertsJB, UptonML, WilsonCG, BonassarLJ, SchlichtingAL. 2001. Direct perfusion measurements of cancellous bone anisotropic permeability. J Biomech. 34(9):1197–1202.
  • LawrenceBJ, DevarapalliM, MadihallySV. 2009. Flow dynamics in bioreactors containing tissue engineering scaffolds. Biotechnol Bioeng. 102(3):935–947.
  • LochmüllerEM, PÖschlK, WürstlinL, MatsuuraM, MüllerR, LinkTM, EcksteinF. 2008. Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density?Osteoporos Int. 19(4):537–545.
  • LoeffelM, FergusonSJ, NolteLP, KowalJH. 2008. Vertebroplasty: experimental characterization of polymethylmethacrylate bone cement spreading as a function of viscosity, bone porosity, and flow rate. Spine. 33(12):1352–1359.
  • MalachanneE, DureisseixD, CañadasP, JourdanF. 2008. Experimental and numerical identification of cortical bone permeability. J Biomech. 41(3):721–725.
  • MartinRB. 1984. Porosity and specific surface of bone. Crit Rev Biomed Eng. 10(3):179–222.
  • NaumanEA, FongKE, KeavenyTM. 1999. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann Biomed Eng. 27(4):517–524.
  • NewittDC, MajumdarS, van RietbergenB, von IngerslebenG, HarrisST, GenantHK, ChesnutC, GarneroP, MacDonaldB. 2002. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int. 13(1):6–17.
  • O'BrienFJ, HarleyBA, WallerMA, YannasIV, GibsonLJ, PrendergastPJ. 2007. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care. 15(1):3–17.
  • QinY, LamH, FerreriS, RubinC. 2010. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact. 10(1):12–24.
  • ReyRM, PaiementGD, McGannWM, JastyM, HarriganTP, BurkeDW, HarrisWH. 1987. A study of intrusion characteristics of low viscosity cement Simplex-P and Palacos cements in a bovine cancellous bone model. Clin Orthop Relat Res (215):272–278.
  • ShimkoD, ShimkoV, SanderE, DicksonK, NaumanE. 2005. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed. Mater Res B App Biomater. 73(2):315–324.
  • SilvaMJ, GibsonLJ. 1997. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone. 21(2):191–199.
  • SinghR, LeeP, LindleyTC, DashwoodR, FerrieE, ImwinkelriedT. 2009. Characterization of the structure and permeability of titanium foams for spinal fusion devices. Acta Biomaterialia. 5(1):477–487.
  • StauberM, RapillardL, van LentheGH, ZyssetP, MüllerR. 2006. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res. 21(4):586–595.
  • TeoJ, Si-HoeK, KehJ, TeohS. 2007. Correlation of cancellous bone microarchitectural parameters from microCT to CT number and bone mechanical properties. Mater Sci Eng. C. 27(2):333–339.
  • TurnerC. 1998. Three rules for bone adaptation to mechanical stimuli. Bone. 23:399–407, Pergamon Press: New York.
  • UlrichD, van RietbergenB, LaibA, RüegseggerP. 1999. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 25(1):55–60.
  • UlrichD, van RietbergenB, WeinansH, RüegseggerP. 1998. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech. 31(12):1187–1192.
  • van LentheGH, HuiskesR. 2002. How morphology predicts mechanical properties of trabecular structures depends on intra-specimen trabecular thickness variations. J Biomech35(9):1191–1197.
  • van RietbergenB, WeinansH, HuiskesR, OdgaardA. 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech. 28(1):69–81.
  • WeaverJK, ChalmersJ. 1966. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. J Bone Joint Surg Am. 48(2):289–298.
  • WhitehouseWJ, DysonED, JacksonCK. 1971. The scanning electron microscope in studies of trabecular bone from a human vertebral body. J Anat. 108(Pt 3):481–496.
  • WolframU, SchmitzB, HeuerF, ReinehrM, WilkeHJ. 2009. Vertebral trabecular main direction can be determined from clinical CT datasets using the gradient structure tensor and not the inertia tensor – a case study. J Biomech. 42(10):1390–1396.
  • YooA, JasiukI. 2006. Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. J Biomech. 39(12):2241–2252.
  • ZeiserT, Bashoor-ZadehM, DarabiA, BaroudG. 2008. Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation. Proc Inst Mech Eng [H]. 222(2):185–194.
  • ZyssetPK. 2003. A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech. 36(10):1469–1485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.