1,415
Views
66
CrossRef citations to date
0
Altmetric
Article

A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications

, &
Pages 1344-1361 | Received 25 Aug 2011, Accepted 26 Feb 2012, Published online: 06 Jul 2012

REFERENCES

  • AbdullahOM, OthmanSF, ZhouXJ, MaginRL. 2007. Diffusion tensor imaging as an early marker for osteoarthritis. Proc Int Soc Magn Reson Med. 15:814.
  • AbousleimanY, ChengAHD, JiangC, RoegiersJC. 1996. Poroviscoelastic analysis of borehole and cylinder problems. Acta Mech. 109(1–4):199–219.
  • AndersonAE, EllisBJ, MaasSA, PetersCL, WeissJA. 2008. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 130:051008.
  • AndersonAE, EllisBJ, MaasSA, WeissJA. 2010. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J Biomech. 43:1351–1357.
  • AteshianGA, ChahineNO, BasaloIM, HungCT. 2004. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J Biomech. 37:391–400.
  • AteshianGA, EllisBJ, WeissJA. 2007. Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng. 129:405–412.
  • AteshianGA, RajanV, ChahineNO, CanalCE, HungCT. 2009. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng. 131:61003.
  • AteshianGA, WardenWH, KimJJ, GrelsamerRP, MowVC. 1997. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech. 30:1157–1164.
  • AteshianGA, WeissJA. 2010. Anisotropic hydraulic permeability under finite deformation. J Biomech Eng. 132:111004.
  • AthanasiouKA, DarlingEM, HuJC2010. Articular cartilage tissue engineering. San Rafael: Morgan & Claypool.
  • AthanasiouKA, RosenwasserMP, BuckwalterJA, MalininTI, MowVC. 1991. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res. 9:330–340.
  • BachrachNM, MowVC, GuilakF. 1998. Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J Biomech. 31:445–451.
  • BettenJ. 1987. Formulation of anisotropic constitutive equations. In: BoehlerJP, editor. Applications of tensor functions in solid mechanics. CISM courses and lectures no. 292. Wien: Springer-Verlag. p. 227–250.
  • BishopAW. 1959. The principle of effective stress. Tek Ukebl. 39:859–863.
  • BluhmJ. 2002. Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: EhlersW, BluhmJ, editors. Porous media: theory, experiments and numerical applications. Berlin, Heidelberg, New York: Springer-Verlag. p. 87–118.
  • BoehlerJP. 1987. Introduction to the invariant formulation of anisotropic constitutive equations. In: BoehlerJP, editor. Applications of tensor functions in solid mechanics. CISM courses and lectures no. 292. Wien: Springer-Verlag. p. 13–30.
  • BowenRM. 1980. Incompressible pourous media models by use of theory of mixture. Int J Eng Sci. 18:1129–1148.
  • BowenRM. 1982. Compressible porous media models by use of the theory of mixtures. Int J Eng Sci. 20:697–735.
  • BuckleyMR, GleghornJP, CohenI, BonassarLJ. 2007. Depth dependence of shear properties in articular cartilage. In: Transactions of the 53rd annual meeting of the orthopaedic research society. San Diego, CA.
  • ChahineNO, ChenFH, HungCT, AteshianGA. 2005. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature. Biophys J. 89:1543–1550.
  • ChahineNO, WangCC, HungCT, AteshianGA. 2004. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J Biomech. 37:1251–1261.
  • ChapelleD, GerbeauJF, Sainte-MarieJ, Vignon-ClementelIE. 2010. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. J Vasc Interv Radiol. 14:1427–1432.
  • ChenAC, BaeWC, SchinaglRM, SahRL. 2001. Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech. 34:1–12.
  • ChenY, ChenX, HisadaT. 2006. Non-linear finite element analysis of mechanical electrochemical phenomena in hydrated soft tissues based on triphasic theory. Int J Numer Methods Eng. 65:147–173.
  • ChenAHD, DetournayE. 1998. On singular integral equations and fundamental solutions of poroelasticity. Int J Solids Struct. 35(34/35):4521–4555.
  • CoussyO. 2004. Poromechanics. Chichester: John Wiley & Sons.
  • de BoerR. 2000. Theory of porous media. Highlights in the historical development and current state. Heidelberg: Springer-Verlag.
  • DelfinoA, StergiopulosN, MooreJE, Jr, MeisterJJ. 1997. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech. 30:777–786.
  • DemirayH. 1972. A note on the elasticity of soft biological tissues. J Biomech. 5:309–311.
  • deVisserSK, BowdenJC, Wentrup-BryneE, RintoulL, BostromT, PopeJM, MomotKI. 2008a. Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements. Osteoarthritis Cartilage. 16:689–697.
  • deVisserSK, CrawfordRW, PopeJM. 2008b. Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging. Osteoarthritis Cartilage. 16:83–89.
  • EhlersW. 1989. Poröse Medien – ein kontinuumsmechanisches Modell auf der Basis der MischungstheorieUniversität GH Essen. Forschungsbericht aus dem Fachbereich Bauwesen. 47.
  • EhlersW. 1993. Constitutive equations for granular materials in geomechanical context. In: HutterK, editor. Continuum mechanics in environmental sciences and geophysics. CISM courses and lectures no. 337. Wien: Springer-Verlag. p. 313–402.
  • EhlersW. 2002. Foundations of multiphasic and porous materials. In: EhlersW, BluhmJ, editors. Porous media: theory, experiments and numerical applications. Berlin: Springer-Verlag. p. 3–86.
  • EhlersW, EipperG. 1997. Finite elastizität bei uidgesättigten hochporösen festkörpern. Z Angew Math Mech. 77:79–80.
  • EhlersW, EipperG. 1999. Finite elastic deformations in liquid-saturated and empty porous solids. Transport Porous Med. 34:179–191.
  • EhlersW, KarajanN, MarkertB. 2009. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech Model Mechanobiol. 8:233–251.
  • Eipper G. 1998. Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen FestkörpernUniversität Stuttgart. Bericht Nr. II-1 aus dem Institut für Mechanik (Bauwesen).
  • ElliottDM, NarmonevaDA, SettonLA. 2002. Direct measurement of the Poisson's ratio of human patella cartilage in tension. J Biomech Eng. 124:223–228.
  • ErneOK, ReidJB, EhmkeLW, SommersMB, MadeySM, BottlangM. 2005. Depth-dependent strain of patellofemoral articular cartilage in unconfined compression. J Biomech. 38:667–672.
  • FedericoS, GasserTC. 2010. Nonlinear elasticity of biological tissues with statistical fibre orientation. J R Soc Interface. 7:955–966.
  • FedericoS, GrilloA. 2012. Elasticity and permeability of porous fibre reinforced materials under large deformations. Mech Mater. 44:58–71.
  • FedericoS, HerzogW. 2008. On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech Model Mechanobiol. 7:367–378.
  • FilidoroL, DietrichO, WeberJ, RauchE, OetherT, WickM, ReiserMF, GlaserC. 2005. High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Med. 53:993–998.
  • GarcíaJJ, CortésDH. 2007. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data. J Biomech. 40:1737–1744.
  • GasserTC, OgdenRW, HolzapfelGA. 2006. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 3:15–35.
  • Goreham-VossCM, McKinleyTO, BrownTD. 2007. A finite element exploration of cartilage stress near an articular incongruity during unstable motion. J Biomech. 40:3438–3447.
  • GuKB, LiLP. 2011. A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci. Med Eng Phys. 33:497–503.
  • HanSK, FedericoS, EpsteinM, HerzogW. 2005. An articular cartilage contact model based on real surface geometry. J Biomech. 38:179–184.
  • HassanizadehSM, GrayWG. 1979a. General conservation equations for multi-phase systems: 1. Averaging procedure. Adv Water Resour. 2:131–144.
  • HassanizadehSM, GrayWG. 1979b. General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Adv Water Resour. 2:191–208.
  • HassanizadehSM, GrayWG. 1980. General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv Water Resour. 3:25–40.
  • HassanizadehSM, GrayWG. 1990. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resour. 13:169–186.
  • HolmesMH, LaiWM, MowVC. 1985. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage. J Biomed Eng. 107:206–218.
  • HolzapfelGA, SommerG, GasserCT, RegitnigP. 2005a. Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am J Physiol Heart Circ Physiol. 289:H2048–H2058.
  • HolzapfelGA, StadlerM, GasserTC. 2005b. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent design. J Biomech Eng. 127:166–180.
  • HuangCY, MowVC, AteshianGA. 2001. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J Biomech Eng. 123:410–417.
  • HuangCY, SoltzMA, KopaczM, MowVC, AteshianGA. 2003. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension–compression nonlinearity in the biphasic response of cartilage. J Biomech Eng. 125:84–93.
  • HuangCY, StankiewiczA, AteshianGA, MowVC. 2005. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech. 38:799–809.
  • HumphreyJD. 2002. Cardiovascular solid mechanics. Cells, tissues, and organs. New York: Springer-Verlag.
  • JoshiMD, SuhJK, MaruiT, WooSLY. 1995. Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res. 29:823–828.
  • JulkunenP, KivirantaP, WilsonW, JurvelinJS, KorhonenRK. 2007. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J Biomech. 40:1862–1870.
  • JulkunenP, WilsonW, JurvelinJS, RieppoJ, QuCJ, LammiMJ, KorhonenRK. 2008. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech. 41:1978–1986.
  • JurvelinJS, BuschmannMD, HunzikerEB. 1997. Optical and mechanical determination of Poisson's ratio of adult bovine humeral articular cartilage. J Biomech. 30:235–241.
  • KorhonenRK, LaasanenMS, TöyräsJ, LappalainenR, HelminenHJ, JurvelinJS. 2003. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech. 36:1373–1379.
  • LaiWM, HouJS, MowVC. 1991. A triphasic theory for the swelling and deformation behaviours of articular cartilage. J Biomech Eng. 113:245–258.
  • LiLP, BuschmannMD, Shirazi-AdlA. 2000. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech. 33:1533–1541.
  • LiLP, CheungJTM, HerzogW. 2009. Three-dimensional fibril-reinforced finite element model of articular cartilage. Med Biol Eng Comput. 47:607–615.
  • LiLP, HerzogW. 2004. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology. 41:181–194.
  • LiG, LopezO, RubashH. 2001. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng. 123:341–346.
  • LilledahlMB, PierceDM, RickenT, HolzapfelGA, de Lange DaviesC. 2011. Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling. IEEE Trans Med Imaging. 30(9):1635–1648.
  • MandaK, RydL, ErikssonA. 2011. Finite element simulations of a focal knee resurfacing implant applied to localized cartilage defects in a sheep model. J Biomech. 44:794–801.
  • MansourJM. 2008. Biomechanics of cartilage. In: OatisCA, editor. Kinesiology: The Mechanics and Pathomechanics of Human Movement, 2nd Ed., Philadelphia: Lippincott Williams and Wilkins. p. 69–83.
  • MarkertB. 2007. A constitutive approach to 3-D nonlinear fluid flow through finite deformable porous continua. Transport Porous Med. 70:427–450.
  • MederR, deVisserSK, BowdenJC, BostromT, PopeJM. 2006. Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthritis Cartilage. 14:875–881.
  • MononenM, MikkolaM, JulkunenP, OjalaR, NieminenM, JurvelinJ, KorhonenR. 2012. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics – a 3D finite element analysis. J Biomech. 45(3):579–587.
  • MowVC, GibbsMC, LaiWM, ZhuWB, AthanasiouKA. 1989. Biphasic indentation of articular cartilage-II. A numerical algorithm and an experimental study. J Biomech. 22:853–861.
  • MowVC, GuWY, ChenFH. 2005. Structure and function of articular cartilage and meniscus. In: MowVC, HuiskesR, editors. Basic orthopaedic biomechanics & mechano-biology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins. p. 181–258.
  • ParkS, KrishnanR, NicollSB, AteshianGA. 2003. Cartilage interstitial fluid load support in unconfined compression. J Biomech. 36:1785–1796.
  • PeñaE, CalvoB, MartínezMA, PalancaD, DoblaréM. 2005. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech. p. 498–507.
  • PierceDM, TrobinW, RayaJG, TrattnigS, BischofH, GlaserC, HolzapfelGA. 2010. DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann Biomed Eng. 38:2447–2463.
  • PierceDM, TrobinW, TrattnigS, BischofH, HolzapfelGA. 2009. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. J Biomech Eng. 131:091006.
  • PotterHG, BlackBR, ChongLR. 2009. New techniques in articular cartilage imaging. Clin Sports Med. 28:77–94.
  • ResponteDJ, NatoliRM, AthanasiouKA. 2007. Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit Rev Biomed Eng. 35:363–411.
  • ReynaudB, QuinnTM. 2006. Anisotropic hydraulic permeability in compressed articular cartilage. J Biomech. 39:131–137.
  • RickenT, BluhmJ. 2009. Evolutional growth and remodeling in multiphase living tissue. Comp Mater Sci. 45:806–811.
  • RickenT, BluhmJ. 2010. Remodeling and growth of living tissue: a multiphase theory. Arch Appl Mech. 80:453–465.
  • RickenT, DahmenU, DirschO. 2010. A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech Model Mechanobiol. 9:435–450.
  • SimoJC, PisterKS. 1984. Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Engrg. 46:201–215.
  • SkemptonAW. 1960. Terzaghi's discovery of effective stress. In: BjerrumL, CasagrandeA, PeckRB, SkemptonAW, editors. From theory to practice in soil mechanics. New York, London: John Wiley. p. 42–53.
  • SoltzMA, AteshianGA. 1998. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech. 31:927–934.
  • SoltzMA, AteshianGA. 2000. A conewise linear elasticity mixture model for the analysis of tension-compression nonlineartiy in articular cartilage. J Biomech Eng. 122:576–586.
  • SpencerAJM. 1971. Part III. Theory of invariants. In: EringenAC, editor. Continuum physics. New York: Academic Press. p. 239–353.
  • SunW, ChaikofEL, LevenstonME. 2008. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. J Biomech Eng. 130:061003.
  • TongJ, CohnertT, RegitnigP, HolzapfelGA. 2011. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behavior and material modeling. Eur J Vasc Endovasc Surg. 42:207–219.
  • van LoonR, HuygheJ, WijlaarsM, BaaijensF. 2003. 3D FE implementation of an incompressible quadriphasic mixture model. Int J Numer Methods Eng. 57:1243–1258.
  • WangL, FrittonSP, WeinbaumS, CowinSC. 2003. On bone adaptation due to venous stasis. J Biomech. 36:1439–1451.
  • WhitakerS. 1977. Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv Heat Transfer. 13:119–203.
  • WilsonW, HuygheJM, van DonkelaarCC. 2007. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech Model Mechanobiol. p. 43–53.
  • WilsonW, van DonkelaarCC, van RietbergenB, HuiskesR. 2005. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech. 38:1195–1204.
  • WilsonW, van DonkelaarCC, van RietbergenB, ItoK, HuiskesR. 2004. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech. 37:357–366.
  • WongBL, BaeWC, ChunJ, GratzKR, SahRL. 2007. Micro-mechanics of cartilage articulation: effect of degeneration on shear deformation. In: Transactions of the 53rd annual meeting of the orthopaedic research society. San Diego, CA.
  • WongM, PonticielloM, KovanenV, JurvelinJS. 2000. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech. 33:1049–1054.
  • ZhengQS, SpencerAJM. 1993a. On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems. Int J Eng Sci. 4:617–635.
  • ZhengQS, SpencerAJM. 1993b. Tensors which characterize anisotropies. Int J Eng Sci. 5:679–693.
  • ZipfelWR, WilliamsRM, WebbWW. 2003. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 21:1368–1376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.