382
Views
15
CrossRef citations to date
0
Altmetric
Articles

Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea

, , &
Pages 1096-1107 | Received 02 Apr 2012, Accepted 03 Oct 2012, Published online: 22 Nov 2012

REFERENCES

  • AibaraRJ, WelshJT, PuriaS, GoodeRL. 2001. Human middle-ear sound transfer function and cochlear impedance. Hear Res. 152:100–109.
  • BöhnkeF, ArnoldW. 1999. 3D-finite element model of the human cochlea including fluid-structure couplings. ORL. 61:305–310.
  • de BoerE. 1983. On active and passive cochlear models-toward a generalized analysis. J Acoust Soc Am. 73:574–576.
  • de BoerE, NuttallAL. 2009. Inverse-solution method for a class of non-classical cochlear models. J Acoust Soc Am. 125:2146–2154.
  • DiependaalRJ, ViergeverMA. 1989. Nonlinear and active two-dimensional cochlear models: time-domain solution. J Acoust Soc Am. 85:803–812.
  • EmadiG, RichterCP, DallosP. 2003. Stiffness of the gerbil basilar membrane: radial and longitudinal variations. J Neurophysiol. 91:474–488.
  • FleischerM, SchmidtR. 2010. Compliance profiles derived from a three-dimensional finite-element model of the basilar membrane. J Acoust Soc Am. 127(5):2973–2991.
  • FukazawaT. 2002. How can the cochlear amplifier be realized by the outer hair cells which have nothing to push against?Hear Res. 172:53–61.
  • GanRZ, FengB, SunQ. 2004. Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng. 32:847–859.
  • GanRZ, ReevesBP, WangXL. 2007. Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng. 35:2180–2195.
  • GeislerCD, SangC. 1995. A cochlear model using feed-forward outer-hair-cell forces. Hear Res. 86:132–146.
  • GreenwoodDD. 1990. A cochlear frequency-position function for several species – 29 years later. J Acoust Soc Am. 87:2592–2605.
  • GundersenT, SkarsteinO, SikkelandT. 1978. A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the Mössbauer effect. Acta Otolaryngol. 86(3–4):225–232.
  • IgarashiM, OhashiK, IshiiM. 1986. Morphometric comparison of endolymphatic and perilymphatic spaces in human temporal bones. Acta Otolaryngol (Stockh). 101:161–164.
  • KanisLJ, de BoerE. 1996. Comparing frequency-domain with time-domain solutions for a locally active nonlinear model of the cochlea. J Acoust Soc Am. 100:2543–2546.
  • KimN, HommaK, PuriaS. 2011. Inertial bone conduction: symmetric and anti-symmetric components. Assoc Res Otolaryngol. 12(3):261–279.
  • KimY, XinJ. 2005. A two-dimensional nonlinear nonlocal feed-forward cochlear model and time domain computation of multitone interactions. Multiscale Mode Simul. 4(2):664–690.
  • KoikeT, WadaH. 2002. Modeling of the human middle ear using the finite-element method. J Acoust Soc Am. 111:1306–1317.
  • LimKM, SteeleCR. 2002. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hear Res. 170:190–205.
  • LiuS, WhiteRD. 2008. Orthotropic material properties of the gerbil basilar membrane. J Acoust Soc Am. 123:2160–2170.
  • MillerCE. 1985. Structural implications of basilar membrane compliance measurement. J Acoust Soc Am. 77(4):1465–1474.
  • NaiduRC, MountainDC. 2007. Basilar membrane tension calculations for the gerbil cochlea. J Acoust Soc Am. 121(2):994–1002.
  • NakajimaHH, DongW, OlsonES, MerchantSN, RaviczMZ, RosowskietJJ. 2009. Differential intracochlear sound pressure measurements in normal human temporal bones. JARO. 10:23–36.
  • NeelyST. 1981. Finite difference solution of a two-dimensional mathematical model of the cochlea. J Acoust Soc Am. 69:1386–1393.
  • NeelyST, KimDO. 1986. A model for active elements in cochlear biomechanics. J Acoust Soc Am. 79(5):1472–1480.
  • OkunoH, SandoI. 1988. Anatomy of the round window: a histopathological study with a graphic reconstruction method. Acta Otolaryngol. 106:1–2.
  • OlsonES. 2001. Intracochlear pressure measurements related to cochlear tuning. J Acoust Soc Am. 110:349–367.
  • PuriaS, AllenJB. 1991. A parametric study of cochlear input impedance. J Acoust Soc Am. 89:287–309.
  • RamamoorthyS, DeoNV, GroshK. 2007. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. J Acoust Soc Am. 121(5):2758–2773.
  • RoblesL, RuggeroMA. 2001. Mechanics of the mammalian cochlea. Physiol Rev. 81:1305–1352.
  • RuggeroMA, RichNC, RecioA, NarayanSS, RoblesL. 1997. Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am. 101:2151–2163.
  • SchweitzerL, LutzC, HobbsM, WeaverS. 1996. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea. Hear Res. 97:84–94.
  • SistoR, MoletiA, PaternosterN, BottiT, BertacciniD. 2010. Different models of the active cochlea, and how to implement them in the state-space formalism. J Acoust Soc Am. 128(3):1191–1202.
  • StenfeltS, PuriaS, HatoN, GoodeRL. 2003. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hear Res. 181:131–143.
  • SteeleCR, LimKM. 1999. Cochlear model with three-dimensional fluid, inner sulcus and food-forward mechanism. Audiol Neurootol. 4:197–203.
  • SteeleCR, TaberLA. 1979. Comparison of WKB and finite difference calculations for a two-dimensional cochlear model. J Acoust Soc Am. 65(4):1001–1006.
  • TaberLA, SteeleCR. 1981. Cochlear model including three-dimensional fluid and four modes of partition flexibility. J Acoust Soc Am. 70(2):426–436.
  • WadaH, MichikoS, ToshimitsuK, KojiH, TomonoriT. 1998. Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system. Hear Res. 120:1–6.
  • WangXL, HuYJ, WangZL, ShiH. 2011. Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device. Hear Res. 280(1–2):48–57.
  • WangXL, ChengT, GanRZ. 2007. Finite element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am. 122:906–917.
  • WangXL, HuYJ. 2012. Evaluation of round window stimulation by a FE model of human auditory periphery. Chin J Theor Appl Mech. 44(3):622–629.
  • WattsL. 2000. The mode-coupling Liouville–Green approximation for a two-dimensional cochlear model. J Acoust Soc Am. 108:2266–2271.
  • WeverEG. 1949. Theory of hearing. London: Constable.
  • WysockiJ. 1999. Dimensions of the human vestibular and tympanic scalae. Hear Res. 135:39–46.
  • YangL, van der WerfKO, KoopmanBFJM, SubramaniamV, BenninkML, DijkstraPJ, FeijenJ. 2007. Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed Mater Res Part A. 82A:160–168.
  • YoonYJ, PuriaS, SteeleCR. 2007. Intracochlear pressure and derived quantities from a three-dimensional model. J Acoust Soc Am. 122(2):952–966.
  • YoonYJ, SteeleCR, PuriaS. 2011. Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison. Biophys J. 100:1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.