294
Views
15
CrossRef citations to date
0
Altmetric
Articles

Effect of material and structural factors on fracture behaviour of mineralised collagen microfibril using finite element simulation

, &
Pages 1181-1190 | Received 29 May 2013, Accepted 12 Jan 2014, Published online: 24 Feb 2014

References

  • AkaoM, AokiH, KatoK. 1981. Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci. 16(3):809–812.
  • AladinDM, CheungKM, NganAH, ChanD, LeungVY, LimCT, LukKD, LuWW. 2010. Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J Orthop Res. 28(4):497–502.
  • AllenMR, GineytsE, LeemingDJ, BurrDB, DelmasPD. 2008. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int. 19(3):329–337.
  • AndreasF, LucD, ChristianH, SanahujaJ. 2009. Mechanical behaviour of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. J Biomed Mater Res A. 88A(1):149–161.
  • BaileyAJ. 2001. Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 122(7):735–755.
  • BaileyAJ, PaulRG, KnottL. 1998. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 106(1–2):1–56.
  • BanseX, SimsTJ, BaileyAJ. 2002. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 17(9):1621–1628.
  • BarkaouiA, HambliR. 2011. Finite element 3D modeling of mechanical behaviour of mineralized collagen microfibril. J Appl Biomater Biomech. 9(3):207–213.
  • BarkaouiA, HambliR. 2013. Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Eng. 10.1080/10255842.2012.758255.
  • BaseltDR, RevelJP, BaldschwielerJD. 1993. Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J. 65(6):2644–2655.
  • BoxbergerJ, VashishthD. 2004. Non enzymatic glycation affects bone fracture by modifying creep and inelastic properties of collagen. Trans Orthop Res Soc. 29:0491.
  • BuehlerMJ. 2008. Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech Behav Biomed Mater. 1(1):59–67.
  • CowinSC. 1989. Bone mechanics. Boca Raton (FL): CRC Press, pp. 200–255.
  • CurreyJD. 1969. The relationship between the stiffness and the mineral content of bone. J Biomech. 2(4):477–480.
  • DongXN, LuoQ, SparkmanD, MillwaterH, WangX. 2010. Random field assessment of nanoscopic in homogeneity of bone. Bone. 47:1380–1384.
  • DongXN, TejaG, HarryRM, XiaoDW. 2009. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites. J Biomech. 42(3):202–209.
  • ElhamH, IwonaJ. 2012. Elastic modeling of bone at nanostructural level. Mater Sci Eng R. 73:27–49.
  • EyreDR, WeisMA, WuJJ. 2008. Advances in collagen crosslink analysis. Methods. 45(1):65–74.
  • FengL. 2010. Multi-scale characterization of swine femoral cortical bone and long bone defect repair by regeneration. [Ph.D. dissertation]. Champaign, IL: University of Illinois at Urbana-Champaign.
  • FratzlP. 2008. Collagen: structure and mechanics. New York (NY): Springer.
  • FratzlP, Fratzl-ZelmanN, KlaushoferK. 1993. Collagen packing and mineralization: an X-ray scattering investigation of Turkey leg tendon. Biophys J. 64:260–266.
  • FratzlP, WeinkamerR. 2007. Nature's hierarchical materials. Prog Mater Sci. 52:1263–1334.
  • FriessW. 1998. Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm. 45:113–136.
  • GautieriA, VesentiniS, RedaelliA, BuehlerMJ. 2011. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 9, 11(2):757–766.
  • GelseK, PoschlE, AignerT. 2003. Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev. 55(12):1531–1546.
  • GuptaHS, SetoJ, KraussS, BoeseckeP, ScreenHRC. 2010. In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J Struct Biol. 169(2):183–191.
  • HabelitzS, BaloochM, MarshallSJ, BaloochG, MarshallGW. 2002. In situ force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol. 138:227–236.
  • HambliR, BarkaouiA. 2012. Physically based 3D finite element model of a single mineralized collagen microfibril. J Theor Biol. 301:28–41.
  • HolmesDF, GilpinCJ, BaldockC, ZieseU, KosterAJ, KadlerKE. 2001. Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc Natl Acad Sci USA. 98:7307–7312.
  • JagerI, FratzlP. 2000. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J. 79:1737–1746.
  • JiB, GaoH. 2006. Elastic properties of nanocomposite structure of bone. Compos Sci Technol. 66:1209–1215.
  • KatzJL, MeunierA. 1987. The elastic anisotropy of bone. J Biomech. 20:1063–1070.
  • KnottL, BaileyAJ. 1998. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 22:181–187.
  • KothaSP, GuzelsuN. 2000. The effects of interphase and bonding on the elastic modulus of bone: changes with age-related osteoporosis. Med Eng Phys. 22(8):575–585.
  • LeeJ, ScheragaHA, RackovskyS. 1996. Computational study of packing a collagen-like molecule: quasi-hexagonal vs ‘‘Smith’’ collagen microfibril model. Biopolymers. 40(6):595–607.
  • LeesS. 1981. A mixed packing model for bone collagen. Calcif Tissue Int. 33(6):591–602.
  • LeesS. 1987. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect Tissue Res. 16:281–303.
  • LiX, AgrawalM, WangX. 2003. Age dependence of in situ thermostability of collagen inhuman bone. Calcif Tissue Int. 72:513–518.
  • NikolovS, RaabeD. 2008. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extra fibrillar mineralization. Biophys J. 94:4220–4232.
  • NymanJS, RoyA, TylerJH, AcunaRL, GayleHJ, WangX. 2007. Age-related factors affecting the post yield energy dissipation of human cortical bone. J Orthop Res. 25:646–655.
  • OrgelJPRO, IrvingTC, MillerA, WessTJ. 2006. Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci USA. 103(24):9001–9005.
  • OrgelJPRO, MillerA, IrvingTC, FischettiRF, HammersleyAP, WessTJ. 2001. The in situ supramolecular structure of type I collagen. Structure. 9:1061–1069.
  • PidapartiRM, ChandranA, TakanoY, TurnerCH. 1996. Bone mineral lies mainly outside collagen fibrils: predictions of a composite model for osteonal bone. J Biomech. 29:909–916.
  • RhoJY, Kuhn-SpearingL, ZiouposP. 1998. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 20:92–102.
  • SaitoM, MarumoK. 2009. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 21(2):195–214.
  • SasakiN, IkawaT, FukudaA. 1991. Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech. 24:57–61.
  • SasakiN, OdajimaS. 1996. Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique. J Biomech. 29:655–658.
  • ShareefMY, MesserPF, van NoortR. 1993. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic. Biomaterials. 14(1):69–75.
  • SiegmundT, AllenMR, BurrDB. 2008. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J Biomech. 41:1427–1435.
  • SmithJW. 1968. Molecular pattern in native collagen. Nature. 219:157–158.
  • StančíkováM, StančíkR, GubzováZ, RovenskýJ. 1999. Collagen in the treatment of rheumatic diseases – oral tolerance. Bratisl Lek Listy. 100(10):567–571.
  • SunY, LuoZ, FertalaA, AnK. 2002. Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun. 295(2):382–386.
  • TangS, ZeenathU, VashishthD. 2007. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 40:1144–1151.
  • UristMR, DeLangeRJ, FinermanGAM. 1983. Bone cell differentiation and growth factors. Science. 220:680–686.
  • UzelSGM, BuehlerMJ. 2011. Molecular structure, mechanical behaviour and failure mechanism of the C-terminal cross-link domain in type I collagen. J Mech Behav Biomed Mater. 4:153–161.
  • Van der RijtJAJ, van der WerfKO, BenninkML, DijkstraPJ, FeijenJ. 2006. Micromechanical testing of individual collagen fibrils. Macromol Biosci. 6(9):697–702.
  • VashishthD. 2007. The role of collagen matrix in skeletal fragility. Curr Osteoporos Rep. 5:62–66.
  • VashishthD, WuP, GibsonG. 2004. Age-related loss in bone toughness is explained by non-enzymatic glycation of collagen. Trans Orthop Res Soc. 29:497.
  • Viguet-CarrinS, GarneroP, DelmasDP. 2006. The role of collagen in bone strength. Osteoporos Int. 17:319–336.
  • WagnerHD, WeinerS. 1992. On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech. 25:1311–1320.
  • WalshWR, GuzelsuN. 1994. Compressive properties of cortical bone: mineral-organic interfacial bonding. Biomater. 15:137–145.
  • WangX, ShenX, LiX, AgarwalCM. 2002. Age-related changes in the collagen network and toughness of bone. Bone. 31:1–7.
  • WangXD, PuramS. 2004. The toughness of cortical bone and its relationship with age. Ann Biomed Eng. 32:123–135.
  • WeinerS, WagnerHD. 1998. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 28:271–298.
  • WuP, KoharskiC, NonnenmannH, VashishthD. 2003. Loading on non-enzymatically glycated and damaged bone results in an instantaneous fracture. Trans Orthop Res Soc. 28:404.
  • YangL, Van der WerfKO, DijkstraPJ, FeijenJ, BenninkML. 2012. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J Mech Behav Biomed Mater. 6:148–158.
  • YuanF, StockSR, HaeffnerDR, AlmerJD, DunandDC, BrinsonLC. 2011. A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol.10:147–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.