1,280
Views
50
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta

&
Pages 1200-1216 | Received 25 Apr 2013, Accepted 22 Jan 2014, Published online: 24 Feb 2014

References

  • BallykPD, SteinmanDA, EthierCR. 1994. Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology. 31(5):565–586.
  • BarbeeJH. 1973. The effect of temperature on the relative viscosity of human blood. Biorheology. 10:1–5.
  • BirdRB, ArmstrongRC, HassagerO. 1987. Dynamics of polymeric liquids. New York (NY): Wiley.
  • BourantasGC, SkourasED, LoukopoulosVC, BurganosVN, NikiforidisGC. 2011. Two-phase blood flow modeling and mass transport in the human aorta. In: 10th International workshop on biomedical engineering. Kos, Greece: IEEE. p. 1–4.
  • BoydJ, BuickJM. 2007. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method. Phys Med Biol.52:6215–6228.
  • CaballeroAD, LaínS. 2013. A review on computational fluid dynamics modelling in human thoracic aorta. Cardiovasc Eng Technol.4:103–130. 10.1007/s13239-013-0146-6.
  • CaroCG. 2008. Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol. 29: 158–161.
  • CassonN. 1959. Rheology of disperse system. London: Pergamon.
  • CecchiE, GiglioliC, ValenteS, LazzeriC, GensiniGF, AbbateR, ManniniL. 2011. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 214(2):249–256.
  • ChenJ, LuXY. 2006. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. J Biomech.39:818–832.
  • ChengC, TempelD, van HaperenR, van der BaanA, GrosveldF, DaemenMJ, KramsR, de CromR. 2006. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 113(23):2744–2753.
  • ChienS, UsamiS, DellenbackRJ, GregersenMI. 1967. Blood viscosity: influence of erythrocyte aggregation. Science. 157:827–829.
  • ChoYI, KenseyKR. 1991. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1. Steady flows. Biorheology. 28:241–262.
  • CunninghamKS, GotliebAI. 2005. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest.85(1):9–23.
  • FeldmanCL, IlegbusiOJ, HuZ, NestoR, WaxmanS, StonePH. 2002. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary athersclerosis. Am Heart J.143:931–939.
  • FergusonJ, KemblowskiZ. 1991. Applied fluid rheology. London and New York: Elsevier Science.
  • FungYC. 1993. Biomechanics: mechanical properties of living tissues. 2nd ed. Berlin: Springer.
  • FungYC. 1997. Biomechanics circulation. 2nd ed.New York (NY): Springer.
  • GimbroneMA, Jr, TopperJN, NagelT, AndersonKR, Garcia-CardenaG. 2000. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann NY Acad Sci.902:230–239.
  • HerschelWH, BulkleyR. 1926. Measurement of consistency as applied to rubber benzene solution. Proc Am Soc Test Matls.26:621–633.
  • HoiY, MengH, WoodwardSH, BendokBR, HanelRA, GutermanLR, HopkinsLN. 2004. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg.101:676–681.
  • HoldsworthSD. 1993. Rheological models used for the prediction of the flow properties of food products: a literature review. Trans IChemE.71:139–179.
  • JohnstonBM, JohnstonPR, CorneyS, KilpatrickD. 2004. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech.37:709–720.
  • JohnstonBM, JohnstonPR, CorneyS, KilpatrickD. 2006. Non-Newtonian blood flow in human right coronary arteries: transient simulations. J Biomech.39:1116–1128.
  • Kim S. 2002. A study of non-Newtonian viscosity and yield stress of blood in a scanning capillary-tube rheometer. [thesis]. Philadelphia (PA): Drexel University.
  • KimT, CheerAY, DwyerHA. 2004. A simulated dyemethod for flow visualization with a computational model for blood flow. J Biomech.37:1125–1136.
  • KuDN. 1997. Blood flow in arteries. Annu Rev Fluid Mech.29:399–434.
  • KuDN, GiddensDP, ZarinsCK, GlagovS. 1985. Pulsatile flow and atherosclerosis in the human carotid bifurcation, positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5:293–302.
  • LaínS, AliodR. 2000. Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: discussion and comparison with experiments. Int J Heat Fluid Flow. 21:374–380.
  • LaínS, OsorioC. 2010. Simulation and evaluation of a straight-bladed darrieus-type cross flow marine turbine. J Sci Ind Res.69:906–912.
  • LaínS, SommerfeldM. 2013. Characterisation of pneumatic conveying systems using the Euler/Lagrange approach. Powder Technol.235:764–782.
  • LaínS, SommerfeldM, QuinteroB. 2009. Numerical simulation of secondary flow in pneumatic conveying of solid particles in a horizontal circular pipe. Braz J Chem Eng.26:583–594.
  • LantzJ, RennerJ, KarlssonM. 2011. Wall shear stress in a subject specific human aorta – influence of fluid–structure interaction. Int J Appl Mech.3:759–778.
  • LiepschD. 2002. An introduction to biofluid mechanics—basic models and applications. J Biomech.35:415–435.
  • LiuX, FanY, DengX, ZhanF. 2011. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech.44(6):1123–1131.
  • LoweGD. 1986. Blood rheology in arterial disease. Clin Sci.71:137–146.
  • MiddlemanS. 1968. The flow of high polymers. New York (NY): Interscience.
  • MiddlemanS. 1972. Transport phenomena in the cardiovascular system. 1st ed.New York (NY): Wiley.
  • MunsonBR, YoungDF, OkiishiTH. 1998. Fundamentals of fluid mechanics. New York (NY): Wiley.
  • MyersJG, MooreJA, OjhaM, JohnstonKW, EthierCR. 2001. Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng.29:109–120.
  • NeremR. 1995. Atherosclerosis and the role of wall shear stress in flow dependent regulation of vascular function. New York (NY): Oxford University Press.
  • NeremRM, RumbergerJA, GrossDR, HamlinRL, GeigerGL. 1974. Hot-film anemometry velocity measurements of arterial blood flow in horses. Circ Res.10:301–313.
  • O'CallaghanS, WalshM, McGloughlinT. 2006. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. Med Eng Phys.28:70–74.
  • PeattieRA, RiehleTJ, BluthEI. 2004. Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. J Biomech Eng.126:438–446.
  • PedleyTJ. 1980. The fluid mechanics of large blood vessels. Cambridge: Cambridge University Press.
  • PrakashS, EthierCR. 2001a. Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng.123:134–144.
  • PrakashS, EthierCR. 2001b. Enhanced error estimator for adaptive finite-element analysis of 3D incompressible flow. Comput Methods Appl Mech Eng.40–41:5413–5426.
  • RaghavanML, MaB, HarbaugRE. 2005. Quantified aneurysm shape and rupture risk. J Neurosurg.102:355–362.
  • RennerJ, GardhagenR, HeibergE, EbbersT, LoydD, LänneT, KarlssonM. 2009a. A method for subject specific estimation of aortic wall shear stress. WSEAS Trans Biol Biomed.6(3):49–57.
  • RennerJ, LoydD, LanneT, KarlssonM. 2009b. Is a flat inlet profile sufficient for WSS estimation in the aortic arch?WSEAS Trans Fluid Mech.4(4):148–160.
  • ResnickN, YahavH, Shay-SalitA, ShushyM, SchubertS, ZilbermanLC, WofovitzE. 2003. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol.81(3):177–199.
  • RodkiewiczCM. 1975. Localization of early atherosclerotic lesions in the aortic arch in the light of fluid flow. J Biomech.8:149–156.
  • SeedWA, WoodNB. 1971. Velocity patterns in the aorta. Cardiovasc Res.5:319–330.
  • ShahcheraghiN, DwyerHA, CheerAY, BarakatAI, RutanganiraT. 2002. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng.124(4):378–387.
  • SharmaK, BhatSV. 1992. Non-Newtonian rheology of leukemic blood and plasma: are n and k parameters of power Law model diagnostic?Physiol Chem Phys Med NMR.24:307–312.
  • SimTK(the Simulation Toolkit).2007. Simbios Project [Internet]. [cited 2013 Feb 15]. Available from: https://simtk.org/xml/index.xml.
  • SoulisJV, FytanidisDK, PapaioannouVC, StyliadisH, GiannoglouGD. 2011a. Oscillating LDL accumulation in normal human aortic arch-shear dependent endothelium. Hippokratia.15:22–25.
  • SoulisJV, GiannoglouGD, ChatzizisisYS, FarmakisTM, GiannakoulasGA, ParcharidisGE. 2006. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis. Coron Artery Dis.17:351–358.
  • SoulisJV, GiannoglouGD, ChatzizisisYS, SeralidouKV, ParcharidisGE, LouridasGE. 2008. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Med Eng Phys.30(1):9–19.
  • SoulisJV, GiannoglouGD, DimitrakopoulouM, LogothetidesS, MikhailidisD. 2009. Influence of oscillating flow on LDL transport and wall shear stress in the normal aortic arch. Open Cardiovasc Med J.17:128–142.
  • SoulisJV, LampriOP, FytanidisDK, GiannoglouGD. 2011b. Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta. In: 10th International Workshop on Biomedical Engineering. Kos, Greece: IEEE. p. 1–4.
  • TannerRI. 1985. Engineering rheology. New York (NY): Oxford University Press.
  • TaylorCA, HughesTJR, ZarinsCK. 1996. Computational investigations in vascular disease. Comput Phys.10:224–232.
  • ThurstonGB. 1972. Viscoelasticity of human blood. Biophys J.12:1205–1217.
  • van de VosseFN, GijsenFJH, WoltersBJBM. 2001. Numerical analysis of coronary artery flow. In: 2001 Bioengineering Conference. vol. 50. New York (NY): ASME; p. 17–18.
  • VasavaP, JalaliP, DabaghM, KolariP. 2012. Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension. Comput Math Methods Med., https://doi.org/http://dx.doi.org/10.1155/2012/861837.
  • WahleA, LopezJJ, OlszewskiME, VigmostadSC, ChandranKB, RossenJD, SonkaM. 2006. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med Image Anal.10(4):615–631.
  • WenCY, YangAS, TsengLY, ChaiJW. 2010. Investigation of pulsatile flow field in healthy thoracic aorta models. Ann Biomed Eng.38:391–402.
  • WhiteFM. 1979. Viscous fluid flow. New York (NY): McGraw-Hill.
  • WhiteCR, FrangosJA. 2007. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc B.362:1459–1467.
  • WolfgangK, MalteS, BirgitF, AngelaD, HanneloreL, EdzardE. 1998. Plasma viscosity and the risk of coronary heart disease: results from the MONICA-Augsburg cohort study, 1984 to 1992. Arterioscler Thomb Vasc Biol.18:768–772.
  • YilmazF, GundogduMY. 2008. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea–Aust Rheol J.20:197–211.
  • ZhangJB, KuangZB. 2000. Study on blood constitutive parameters in different blood constitutive equations. J Biomech.33:355–360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.