276
Views
6
CrossRef citations to date
0
Altmetric
Articles

Automated generation of tissue-specific three-dimensional finite element meshes containing ellipsoidal cellular inclusions

, &
Pages 1293-1304 | Received 25 Jul 2013, Accepted 28 Feb 2014, Published online: 07 Apr 2014

References

  • AdigaPS, ChaudhuriBB. 1999. Efficient cell segmentation tool for confocal microscopy tissue image and quantitative evaluation of FISH signals. Microsc Res Tech. 44:49–68.
  • AlexopoulosLG, SettonLA, GuilakF. 2005. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Mater. 1(3):317–325.
  • BabuškaI, SuriM. 1992. On locking and robustness in the finite element method. SIAM J Numer Anal. 29(5):1261–1293.
  • BaerAE, LaursenTA, GuilakF, SettonLA. 2003. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model. J Biomech Eng. 125(1):1–11.
  • BarthaumeMA, DechowPC, Iriarte-DiazJ, RossCF, StraitDS, WantQ, GrosseIR. 2012. Probabilistic finite element analysis of a craniofacial finite element model. J Theor Biol. 300:242–253.
  • BenzleySE, PerryE, MerkleyK, ClarkB, SjaardemaG. 1995. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In: Proceedings, 4th international meshing roundtable. p. 179–191.
  • BorreliJ, TinsleyK, RicciWM, BurnsM, KarlIE, HotchkissR. 2003. Induction of chondrocyte apoptosis following impact load. J Orthop Trauma. 17(9):635–641.
  • CaoL, GuilakF, SettonLA. 2009. Pericellular matrix mechanics in the anulus fibrosus predicted by a three-dimensional finite element model and in situ morphology. Cell Mol Bioeng. 2(3):306–319.
  • CaoL, GuilakF, SettonLA. 2011. Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology. Biomech Model Mechanobiol. 10(1):1–10.
  • de Vries SAH. 2012. Deformation thresholds for chondrocyte death and the protective effect of the pericellular matrix [MSc thesis]. Eindhoven, Netherlands: Eindhoven University of Technology.
  • Dhote V, Vernerey FJ. 2013. Mathematical model of the role of degradation on matrix development in hydrogel scaffold. Biomech Model Mechanobiol. [Internet]. Available from: http://link.springer.com/article/10.1007%2Fs10237-013-0493-0# p. 1.
  • GuilakF, MowVC. 2000. The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage. J Biomech. 33(12):1663–1673.
  • HalloranJP, SiboleS, van DonkelaarCC, van TurnhoutMC, OomensCWJ, WeissJA, GuilakF, ErdemirA. 2012. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann Biomed Eng. 40(11):2456–2474.
  • HashimotoS, OchsRL, KomiyaS, LotzM. 1998. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum. 41(9):1632–1638.
  • HatanoA, OkadaJ, HisadaT, SuguiraS. 2012. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes. J Biomech. 45(5):815–823.
  • HughesTJR. 2000. The finite element method: linear statistic and dynamic finite element analysis. Dover Publications.
  • HunzikerEB, QuinnTM, HäuselmannHJ. 2002. Quantitative structural organization of normal adult human articular cartil. Osteoarthr and Cartil. 10(7):564–572.
  • KimE, GuilakF, HaiderMA. 2008. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions under cyclic compressive loading. J Biomed Eng. 130(6):061009-1–061009-10.
  • KimE, GuilakF, HaiderMA. 2010. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. J Biomech Eng. 132:031011-1–031011-13.
  • KolahiKS, MofradMRK. 2010. Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip Rev Syst Biol Med. 2(6):625–639.
  • KorhonenRK, JulkunenP, WilsonW, HerzogW. 2008. Importance of collagen orientation and depth-dependent fixed charge desnities of cartilage on mechanical behavior of chondrocytes. J Biomech Eng. 130(2):021003-1–021003-11.
  • LiH, OppenheimerSM, StuppSI, DunandDC, BrinsonLC. 2004. Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material. Mater Trans. 45(4):1124–1131.
  • LuongDD, PinisettyD, GuptaN. 2013. Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art. Compos B Eng. 44(1):403–416.
  • MaasS, RawlinsD, WeissJ, AteshianG. 2010. FEBio theory manual. Salt Lake City (UT): University of Utah.
  • MichalekAJ, IatridisJC. 2007. A numerical study to determine pericellular matrix modulus and evaluate its effects on the micromechanical environment of chondrocytes. J Biomech. 40:1405–1409.
  • NguyenVP, StroevenM, SluysLJ. 2012. Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comput Methods Appl Mech Eng. 201-204:139–156.
  • PierceDM, RickenR, HolzapfelGA. 2013. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Comput Methods Biomech Biomed Eng. 16(12):1344–1361.
  • PooleC. 1997. Review. Articular cartilage chondrons: form, function and failure. J Anat. 191(1):1–13.
  • QuinnTM, HunzikerEB, HäuselmannHJ. 2005. Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee. Osteoarthritis Cartilage/OARS, Osteoarthritis Research Society. 13:672–678.
  • ShiraziR, Shirazi-AdlA, HurtigM. 2008. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech. 41:3340–3348.
  • SiboleS, ErdemirA. 2012. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations. PLoS ONE. 7(5):e37538.
  • SiboleS, MaasS, HalloranJP, WeissJA, ErdemirA. 2013. Evaluation of a post-processing approach for muliscale analysis of biphasic mechanics of chondrocytes. Comp Methods Biomech Biomed Eng. 16(10):1112–1126.
  • TadepalliSC, ErdemirA, CavanaghPR. 2011. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. J Biomech. 44(12):2337–2343.
  • UptonML, GuilakF, LaursenTA, SettonLA. 2006. Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus. Biomech Model Mechan. 5:140–149.
  • WangJH, ThampattyBP. 2006. An introductory review of cell mechanobiology. Biomech Model Mechan. 5(1):1–16.
  • WoodST, DeanBC, DeanD. 2013. A computational approach to understand phenotypic structure and constitutive mechanics relationships of single cells. Ann Biomed Eng. 41(3):630–644.
  • ZamliZ, SharifM. 2011. Chondrocyte apoptosis: a cause or consequence of osteoarthritis?Int J Rheum Dis. 14:159–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.