968
Views
19
CrossRef citations to date
0
Altmetric
Articles

Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling

, , &
Pages 1768-1774 | Received 06 Jun 2014, Accepted 01 Sep 2014, Published online: 30 Sep 2014

References

  • BhattiMA. 2006. Advanced topics in finite element analysis of structures. New York: Wiley.
  • BoyerG, Pailler MatteiC, MolimardJ, PericoiM, LaquiezeS, ZahouaniH. 2012. Non contact method for in vivo assessment of skin mechanical properties for assessing effect of ageing. Med Eng Phys. 34:172–178.
  • CrichtonML, DonoseBC, ChenX, RaphaelAP, HuangH, KendallMAF. 2011. The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials. 32:4670–4681.
  • CuaAB, WilhelmKP, MaibachHI. 1990. Elastic properties of human skin: relation to age, sex, and anatomical region. Arch Dermatol Res. 282:283–288.
  • Del PreteZ, AntoniucciS, HoffmanAH, GriggP. 2004. Viscoelastic properties of skin in Mov-13 and Tsk mice. J Biomech.37:1491–1497.
  • DelalleauA, JosseG, LagardeJM, ZahouaniH, BergheauJM. 2008. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Res Technol. 14:152–164.
  • EvansSL. 2009. On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials. Comput Methods Biomech Biomed Eng.12:319–332.
  • FaghihiS, KarimiA, JamadiM, ImaniR, SalarianR. 2014. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater Sci Eng C. 38:299–305.
  • FlynnC, TabernerA, NielsenP. 2011a. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations. Med Eng Phys. 33:610–619.
  • FlynnC, TabernerA, NielsenP. 2011b. Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis. Biomech Model Mech. 10:27–38.
  • GilchristMD, KeenanS, CurtisM, CassidyM, ByrneG, DestradeM. 2008. Measuring knife stab penetration into skin simulant using a novel biaxial tension device. Forensic Sci Int.177:52–65.
  • GrovesRB, CoulmanSA, BirchallJC, EvansSL. 2013. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater. 18:167–180.
  • HillebrandGG, LiangZ, YanX, YoshiiT. 2010. New wrinkles on wrinkling: an 8-year longitudinal study on the progression of expression lines into persistent wrinkles. Br J Dermatol. 162:1233–1241.
  • HolzapfelGA, OgdenRW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans A Math Phys Eng Sci. 367:3445–3475.
  • JenkinsG. 2002. Molecular mechanisms of skin ageing. Mech Ageing Dev.123:801–810.
  • KangG, WuX. 2011. Ratchetting of porcine skin under uniaxial cyclic loading. J Mech Behav Biomed Mater. 4:498–506.
  • KarimiA, FaturechiR, NavidbakhshM, HashemiSA. 2014. A nonlinear hyperelastic behavior to identify the mechanical properties of rat skin under uniaxial loading. J Mech Med Biol.14:1450075–1450089.
  • KarimiA, NavidbakhshM. 2013. Measurement of the nonlinear mechanical properties of PVA sponge under longitudinal and circumferential loading. J Appl Polym Sci.131:40257–40264.
  • KarimiA, NavidbakhshM. 2014a. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress–strain definitions. Australas Phys Eng Sci Med. 10.1007/s13246-014-0294-5.
  • KarimiA, NavidbakhshM. 2014b. An experimental study on the mechanical properties of rat brain tissue using different stress–strain definitions. J Mater Sci Mater Med.25:1623–1630.
  • KarimiA, NavidbakhshM. 2014c. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Biomed Tech (Berl). 10.1515/bmt-2014-0028.
  • KarimiA, NavidbakhshM. 2014d. Measurement of the uniaxial mechanical properties of rat skin using different stress–strain definitions. Skin Res Technol. 10.1111/srt.12171.
  • KarimiA, NavidbakhshM. 2014e. Mechanical properties of polyvinyl alcohol sponge under different strain rates. Int J Mater Res. 105:404–408.
  • KarimiA, NavidbakhshM. 2014f. Mechanical properties of PVA material for tissue engineering applications. Mater Technol Adv Perform Mater. 29:90–100.
  • KarimiA, NavidbakhshM. 2014g. Response to the Letter to the Editor: measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater Sci Eng C. 42:421.
  • KarimiA, NavidbakhshM, AlizadehM, RazaghiR. 2014. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress–strain definitions. Biomed Tech (Berl). 10.1515/bmt-2013-0110.
  • KarimiA, NavidbakhshM, AlizadehM, ShojaeiA. 2014. A comparative study on the mechanical properties of the umbilical vein and umbilical artery under uniaxial loading. Artery Res. 8:51–56.
  • KarimiA, NavidbakhshM, BeigzadehB. 2014. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell. 46:97–102.
  • KarimiA, NavidbakhshM, BeigzadehB, FaghihiS. 2013. Hyperelastic mechanical behavior of rat brain infected by Plasmodium berghei ANKA-experimental testing and constitutive modeling. Int J Damage Mech. 10.1177/1056789513514072.
  • KarimiA, NavidbakhshM, FaghihiS. 2013. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications. Perfusion. 29:231–237.
  • KarimiA, NavidbakhshM, FaghihiS. 2014a. A comparative study on plaque vulnerability using constitutive equations. Perfusion. 29:179–184.
  • KarimiA, NavidbakhshM, FaghihiS. 2014b. Measurement of the mechanical failure of PVA sponge using biaxial puncture test. J Biomater Tissue Eng. 4:46–50.
  • KarimiA, NavidbakhshM, FaghihiS, ShojaeiA, HassaniK. 2013. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc Inst Mech Eng H.227:148–161.
  • KarimiA, NavidbakhshM, HaghiAM. 2014. An experimental study on the structural and mechanical properties of polyvinyl alcohol sponge using different stress–strain definitions. Adv Polym Technol. 10.1002/adv.21441.
  • KarimiA, NavidbakhshM, HaghpanahiM. 2014. Constitutive model for numerical analysis of polyvinyl alcohol sponge under different strain rates. J Thermoplastic Compos Mater. 10.1177/0892705713520176.
  • KarimiA, NavidbakhshM, Motevalli HaghiA, FaghihiS. 2013. Measurement of the uniaxial mechanical properties of rat brains infected by Plasmodium berghei ANKA. Proc Inst Mech Eng H. 227:609–614.
  • KarimiA, NavidbakhshM, RazaghiR. 2014c. Dynamic finite element simulation of the human head damage mechanics protected by polyvinyl alcohol sponge. Int J Damage Mech. 10.1177/1056789514535945.
  • KarimiA, NavidbakhshM, RazaghiR. 2014d. Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge. Mater Sci Eng C. 42:608–614.
  • KarimiA, NavidbakhshM, RazaghiR. 2014e. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater Sci Eng C. 39:253–258.
  • KarimiA, NavidbakhshM, RazaghiR. 2014f. A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment. J Appl Phys.116:044701–044710.
  • KarimiA, NavidbakhshM, RazaghiR. 2014g. Plaque and arterial vulnerability investigation in a three-layer atherosclerotic human coronary artery using computational fluid-structure interaction method. J Appl Phys. 116:064701–064709.
  • KarimiA, NavidbakhshM, RazaghiR, HaghpanahiM. 2014. A computational fluid–structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries. J Appl Phys. 115:144702–144711.
  • KarimiA, NavidbakhshM, RezaeeT, HassaniK. 2014. Measurement of the circumferential mechanical properties of the umbilical vein: experimental and numerical analyses. Comput Methods Biomech Biomed Eng. 10.1080/10255842.2014.910513.
  • KarimiA, NavidbakhshM, ShojaeiA, FaghihiS. 2013. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater Sci Eng C. 33:2550–2554.
  • KarimiA, NavidbakhshM, ShojaeiA, HassaniK, FaghihiS. 2014. Study of plaque vulnerability in coronary artery using Mooney–Rivlin model: a combination of finite element and experimental method. Biomed Eng: Appl Basis Commun. 26:145–152.
  • KarimiA, NavidbakhshM, YamadaH, RazaghiR. 2014. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery. Med Biol Eng Comput. 52:589–599.
  • KarimiA, NavidbakhshM, YamadaH, RezaiiT, HassaniK. 2014. A comparative study on the quasilinear viscoelastic mechanical properties of the umbilical artery and the umbilical vein. Perfusion. 10.1177/0267659114536761.
  • KarimiA, NavidbakhshM, YousefiH, AlizadehM. 2014. An experimental study on the elastic modulus of gelatin hydrogels using different stress–strain definitions. J Thermoplastic Compos Mater. 10.1177/0892705714533377.
  • KarimiA, NavidbakhshM, YousefiH, Motevalli HaghiA, Adnani SadatiSJ. 2014. Experimental and numerical study on the mechanical behavior of rat brain tissue. Perfusion. 10.1177/0267659114522088.
  • KuwazuruO, SaothongJ, YoshikawaN. 2008. Mechanical approach to aging and wrinkling of human facial skin based on the multistage buckling theory. Med Eng Phys. 30:516–522.
  • LapeerRJ, GassonPD, KarriV. 2010. Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Prog Biophys Mol Biol. 103:208–216.
  • LiangX, BoppartSA. 2010. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans Biomed Eng. 57:953–959.
  • LimJ, HongJ, ChenWW, WeerasooriyaT. 2011. Mechanical response of pig skin under dynamic tensile loading. Int J Impact Eng. 38:130–135.
  • LimKH, ChewCM, ChenPCY, JeyapalinaS, HoHN, RappelJK, LimBH. 2008. New extensometer to measure in vivo uniaxial mechanical properties of human skin. J Biomech. 41:931–936.
  • MuñozMJ, BeaJA, RodríguezJF, OchoaI, GrasaJ, Pérez del PalomarA, ZaragozaP, OstaR, DoblaréM. 2008. An experimental study of the mouse skin behaviour: damage and inelastic aspects. J Biomech. 41:93–99.
  • NguyenTL, HallSA, VacherP, ViggianiG. 2011. Fracture mechanisms in soft rock: identification and quantification of evolving displacement discontinuities by extended digital image correlation. Tectonophysics. 503:117–128.
  • Özyazganİ, LimanN, DursunN, Güne¸I. 2002. The effects of ovariectomy on the mechanical properties of skin in rats. Maturitas. 43:65–74.
  • SassonA, PatchornikS, EliasyR, RobinsonD, Haj-AliR. 2012. Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement – experimental testing and constitutive modeling. J Mech Behav Biomed Mater. 8:143–153.
  • ShergoldOA, FleckNA, RadfordD. 2006. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng. 32:1384–1402.
  • SilverFH, KatoYP, OhnoM, WassermanAJ. 1992. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J Long Term Eff Med Implants. 2:165–198.
  • TillemanTR, TillemanMM, NeumannMH. 2004. The elastic properties of cancerous skin: Poisson's ratio and Young's modulus. Isr Med Assoc J. 6:753–755.
  • YangCS, YehCH, ChenMY, JiangCH, SuFC, YehML. 2009. Mechanical evaluation of the influence of different suture methods on temporal skin healing. Dermatol Surg. 35:1880–1885.
  • ZhangY, BrodellRT, MostowEN, VinyardCJ, MarieH. 2009. In vivo skin elastography with high-definition optical videos. Skin Res Technol. 15:271–282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.