1,435
Views
35
CrossRef citations to date
0
Altmetric
Articles

Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study

, , , &
Pages 1835-1845 | Received 27 May 2014, Accepted 12 Oct 2014, Published online: 14 Nov 2014

References

  • CallaghanFM, SoellingerM, BaumgartnerRW, PoulikakosD, BoesigerP, KurtcuogluV. 2009. The role of the carotid sinus in the reduction of arterial wall stresses due to head movements-potential implications for cervical artery dissection. J Biomech.42(6):755–761.
  • CaroCG, Fitz-GeraldJM, SchroterRC. 1971. Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc Roy Soc Lond.177:109–159.
  • ChaichanaT, SunZ, JewkesJ. 2013a. Hemodynamic impacts of left coronary stenosis: a patient-specific analysis. Acta Bioeng Biomech.15(3):107–112.
  • ChaichanaT, SunZ, JewkesJ. 2013b. Hemodynamic impacts of various types of stenosis in the left coronary artery bifurcation: a patient-specific analysis. Phys Med.29(5):447–452.
  • DelfinoA, StergiopulosN, MooreJE, MeisterJJ. 1997. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech.30(8):777–786.
  • FriedmanMH, DetersOJ, BargeronCB, HutchinsGM, MarkFF. 1986. Shear-dependent thickening of the human arterial intima. Atherosclerosis.60:161–171.
  • FriedmanMH, DetersOJ, BargeronCB, HutchinsGM, MarkFF. 1989. A biologically plausible model of thickening of arterial intima under shear. Arteriosclerosis.9:511–522.
  • GiddensD, ZarinsC, GlagovS. 1993. The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng.115(4B):588–594.
  • GlagovS, ZarinsCK, GiddensDP, KuDN. 1989. Mechanical factors in the pathogenesis, localization and evolution of atherosclerotic plaques. In: CamilleriJ-P, BerryCL, FiessingerJ-N, BariétyJ, editors. Diseases of the arterial wall. London: Springer. p. 217–239.
  • HadjiloizouN, DaviesJE, MalikIS, Aguado-SierraJ, WillsonK, FoaleRA, ParkerKH, HughesAD, FrancisDP, MayetJ. 2008. Differences in cardiac microcirculatory wave patterns between the proximal left main stem and proximal RCA. Am J Physiol Heart Circ Physiol.295(3):H1198–H1205.
  • HaritonI, deBottonG, GasserTC, HolzapfelGA. 2007. Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol.248(3):460–470.
  • JohnstonBM, JohnstonPR, CorneyS, KilpatrickD. 2004. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech.37(5):709–720.
  • JoshiAK, LeaskRL, MyersJG, OjhaM, ButanyJ, EthierCR. 2004. Intimal thickness is not associated with wall shear stress patterns in the human right coronary artery. Arterioscler Thromb Vasc Biol.24(12):2408–2413.
  • KaunasR, UsamiS, ChienS. 2006. Regulation of stretch-induced JNK activation by stress fiber orientation. Cell Signal.18(11):1924–1931.
  • KleinstreuerC, HyunS, BuchananJRJ, LongestPW, ArchieJPJ, TruskeyGA. 2001. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng.29(1):1–64.
  • KompatsiarisI, TzovarasD, KoutkiasV, StrintzisMG. 2000. Deformable boundary detection of stents in angiographic images. IEEE Trans Med Imaging.19(6):652–662.
  • KuDN, GiddensDP, ZarinsCK, GlagovS. 1985. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol.5(3):293–302.
  • LeeD, ChiuJJ. 1996. Intimal thickening under shear in a carotid bifurcation – a numerical study. J Biomech.29(1):1–11.
  • LeeKW, XuXY. 2002. Modelling of flow and wall behaviour in a mildly stenosed tube. Med Eng Phys.24(9):575–586.
  • LiuG, WuJ, HuangW, WuW, ZhangH, WongKKL, GhistaDN. 2014. Numerical simulation of flow in curved coronary arteries with progressive amounts of stenosis using fluid–structure interaction modelling. J Med Imaging Health Inform. 4(4):605–611.
  • MooreJA, SteinmanDA, PrakashS, JohnstonKW, EthierCR. 1999. Numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J Biomech Eng.121:265–272.
  • NeremRM. 1992. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng.114(3):274–282.
  • PoiseuilleJLM. 1835. Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires. C R Acad Sci.6:554–560. Also appeared in Memoires des Savants Etrangers. Paris: Acad. Sci., 1841, vol. VII: 105–175.
  • ProsiaM, PerktoldbK, SchimacH. 2007. Effect of continuous arterial blood flow in patients with rotary cardiac assist device on the washout of a stenosis wake in the carotid bifurcation: a computer simulation study. J Biomech.40(10):2236–2243.
  • SalzarRS, ThubrikarMJ, EppinkRT. 1995. Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis. J Biomech.28(11):1333–1340.
  • SoulisJV, FarmakisTM, GiannoglouGD, LouridasGE. 2006. Wall shear stress in normal left coronary artery tree. J Biomech Eng.39(4):742–749.
  • TangD, YangC, MondalS, LiuF, CantonG, HatsukamiTS, YuanC. 2008. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. J Biomech.41(4):727–736.
  • TangD, YangC, ZhengJ, WoodardPK, SaffitzJE, PetruccelliJD, SicardGA, YuanC. 2005. Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann Biomed Eng.33(12):1789–1801.
  • ThubrikarMJ, RobicsekF. 1995. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg.59(6):1594–1603.
  • ToriiR, WoodNB, HadjiloizouN, DowseyAW, WrightAR, HughesAD, DaviesJ, FrancisDP, MayetJ, YangGZ. 2009. Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng.25(5):565–580.
  • WentzelJJ, JanssenE, VosJ, SchuurbiersJC, KramsR, SerruysPW, de FeyterPJ, SlagerCJ. 2003. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation.108(1):17–23.
  • WongKKL, MazumdarJN, PincombeB, WorthleySG, SandersP, AbbottD. 2006. Theoretical modeling of micro-scale biological phenomena in human coronary arteries. Med Biol Eng Comput.44(1):971–982.
  • WorthleySG, HelftG, FusterV, ZamanAG, FayadZA, FallonJT, BadimonJJ. 2000. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation.101(6):586–589.
  • WorthleySG, Omar-FarouqueHM, HelftG, MeredithIT. 2002. Coronary artery imaging in the new millennium. Heart Lung Circ.11(1):19–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.