391
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effect of macroscale formation of intraluminal thrombus on blood flow in abdominal aortic aneurysms

, , , , , & show all
Pages 84-92 | Received 04 Jul 2014, Accepted 15 Nov 2014, Published online: 14 Jan 2015

References

  • Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC. 1997. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg. 25:916–926.
  • Arzani A, Shadden SC. 2012. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Phys Fluids. 24:081901.
  • Ashton JH, Vande Geest JP, Simon BR, Haskett DG. 2009. Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J Biomech. 42:197–201.
  • Ayyalasomayajula A, Vande Geest JP, Simon BR. 2010. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J Biomech Eng – T ASME. 132:104502.
  • Basciano C, Kleinstreuer C, Hyun S, Finol EA. 2011. A relation between near-wall particle-hemodynamics and onset of thrombus formation in abdominal aortic aneurysms. Ann Biomed Eng. 39:2010–2026.
  • Biasetti J, Gasser TC, Auer M, Hedin U, Labruto F. 2010. Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism. Ann Biomed Eng. 38:380–390.
  • Biasetti J, Hussain F, Gasser TC. 2011. Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intraluminal thrombus formation. J R Soc Interface. 8:1449–1461.
  • Bluestein D, Dumont K, De Beule M, Ricotta J, Impellizzeri P, Verhegghe B, Verdonck P. 2008. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm – FSI modelling. Comput Methods Biomech Biomed Eng. 12:73–81.
  • Chen CY, Anton R, Hung MY, Menon P, Finol EA, Pekkan K. 2014. Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling. J Biomech Eng – T ASME. 136:031001.
  • Di Martino E, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R, Fumero R. 1998. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg. 15:290–299.
  • Di Martino ES, Vorp DA. 2003. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng. 31:804–809.
  • Finol EA, Amon CH. 2001. Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J Biomech Eng. 123:474–484.
  • Fletcher CAJ. 1991. Computational techniques for fluid dynamics. 2nd ed. Berlin: Springer-Verlag.
  • Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. 2005. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg. 41:584–588.
  • Hans SS, Jareunpoon O, Huang R, Hans B, Bove P, Zelenock GB. 2003. Relationship of residual intraluminal to intrathrombotic pressure in a closed aneurysmal sac. J Vasc Surg. 37:949–953.
  • Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, Swedenborg J. 2003. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 38:1283–1292.
  • Leiderman K, Fogelson AL. 2011. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. Math Med Biol. 28:47–84.
  • Li ZY, Sadat U, U-King-Im J, Tang TY, Bowden DJ, Hayes PD, Gillard JH. 2010. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion a longitudinal follow-up study. Circulation. 122:1815–1822.
  • Nield DA. 2000. Modelling fluid flow and heat transfer in a saturated porous medium. J Appl Math Decis Sci. 4:165–173.
  • Nield DA, Bejan A. 1999. Convection in porous media. 2nd ed. Berlin: Springer-Verlag.
  • O'Rourke MJ, McCullough JP, Kelly S. 2012. An investigation of the relationship between hemodynamics and thrombus deposition within patient-specific models of abdominal aortic aneurysm. Proc Inst Mech Eng H. 226:548–564.
  • Polzer S, Gasser TC, Markert B, Bursa J, Skacel P. 2012. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed Eng Online. 11:1–13.
  • Roy D, Kauffmann C, Delorme S, Lerouge S, Cloutier G, Soulez G. 2012. A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts. Comput Math Methods Med.
  • Schurink GW, van Baalen JM, Visser MJ, van Bockel JH. 2000. Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg. 31:501–506.
  • Somayaji MR, Xenos M, Zhang L, Mekarski M, Linninger AA. 2008. Systematic design of drug delivery therapies. Comput Chem Eng. 32:89–98.
  • Speelman L, Schurink GW, Bosboom EM, Buth J, Breeuwer M, van de Vosse FN, Jacobs MH. 2010. The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J Vasc Surg. 51:19–26.
  • Taylor C, Hughes TG. 1981. Finite element programming of the Navier–Stokes equations. 1st ed. Swansea: Pineridge Press Ltd.
  • Thubrikar M. 2007. Vascular mechanics and pathology. 1st ed. New York: Springer Science+Business Media.
  • Tong J, Cohnert T, Regitnig P, Holzapfel GA. 2011. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur J Vasc Endovasc Surg. 42:207–219.
  • Toungara M, Geindreau C. 2013. Influence of a poro-mechanical modeling of the intra-luminal thrombus and the anisotropy of the arterial wall on the prediction of the abdominal aortic aneurysm rupture. Cardiovasc Eng Technol. 4:192–208.
  • Vande Geest JP, Sacks MS, Vorp DA. 2004. Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J Biomech Eng. 126:815–822.
  • Vande Geest JP, Simon BR, Rigby PH, Newberg TP. 2011. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS. J Biomech Eng – T ASME. 133:044502.
  • Wang DH, Makaroun M, Webster MW, Vorp DA. 2001. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng. 123:536–539.
  • Warsi UAZ. 1999. Mathematics of space and surface grid generation. In: Thompson JF, Soni BK, Weatherill NP, editors. Handbook of grid generation. Boca Raton (FL): CRC Press LLC; p. 2-1–2-45.
  • Wilson JS, Baek S, Humphrey JD. 2013. Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc Roy Soc A – Math Phys Eng Sci. 469.
  • Wilson JS, Virag L, Di Achille P, Karsaj I, Humphrey JD. 2013. Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J Biomech Eng – T ASME. 135:021011.
  • Wufsus AR, Macera NE, Neeves KB. 2013. The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys J. 104:1812–1823.
  • Xenos M, Bluestein D. 2011. Biomechanical aspects of abdominal aortic aneurysm (AAA) and its risk of rupture: fluid structure interaction (FSI) studies. Biomechanics and mechanobiology of aneurysms. Berlin: Springer; p. 181–220.
  • Xenos M, Rambhia SH, Alemu Y, Einav S, Labropoulos N, Tassiopoulos A, Ricotta JJ, Bluestein D. 2010. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann Biomed Eng. 38:3323–3337.
  • Xu ZL, Christley S, Lioi J, Kim O, Harvey C, Sun WZ, Rosen ED, Alber M. 2012. Multiscale model of fibrin accumulation on the blood clot surface and platelet dynamics. Comput Methods Cell Biol. 110:367–388.
  • Xu ZL, Kamocka M, Alber M, Rosen ED. 2011. Computational approaches to studying thrombus development. Arterioscler Thromb Vasc Biol. 31:500–505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.