367
Views
10
CrossRef citations to date
0
Altmetric
Articles

The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model

, , &
Pages 465-473 | Received 20 Jul 2014, Accepted 11 Apr 2015, Published online: 11 May 2015

References

  • Amling M, Herden S, Pösl M, Hahn M, Ritzel H, Delling G. 1996. Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res. 11(1):36–45. doi:10.1002/jbmr.5650110107.
  • Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM. 2004a. The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng. 126(6):677–684. doi:10.1115/1.1763177.
  • Bayraktar HH, Keaveny TM. 2004. Mechanisms of uniformity of yield strains for trabecular bone. J Biomech. 37(11):1671–1678. doi:10.1016/j.jbiomech.2004.02.045.
  • Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. 2004b. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 37(1):27–35. doi:10.1016/S0021-9290(03)00257-4.
  • Bevill G, Eswaran SK, Gupta A, Papadopoulos P, Keaveny TM. 2006. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone. 39(6):1218–1225. doi:10.1016/j.bone.2006.06.016.
  • Bevill G, Farhamand F, Keaveny TM. 2009. Heterogeneity of yield strain in low-density versus high-density human trabecular bone. J Biomech. 42(13):2165–2170. doi:10.1016/j.jbiomech.2009.05.023.
  • Bevill G, Keaveny TM. 2009. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone. 44(4):579–584. doi:10.1016/j.bone.2008.11.020.
  • Bruyère Garnier K, Dumas R, Rumelhart C, Arlot ME. 1999. Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests. Med Eng Phys. 21(9):641–649.
  • Carter DR, Hayes WC. 1976. Bone compressive strength: the influence of density and strain rate. Science. 194(4270):1174–1176. doi:10.1126/science.996549.
  • Carter DR, Hayes WC. 1977. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 59(7):954–962.
  • Fenech CM, Keaveny TM. 1999. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng. 121(4):414–422. doi:10.1115/1.2798339.
  • Ford CM, Keaveny TM. 1996. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech. 29(10):1309–1317. doi:10.1016/0021-9290(96)00062-0.
  • Gong H, Zhang M, Fan Y. 2011. Micro-finite element analysis of trabecular bone yield behavior – effects of tissue nonlinear material properties. J Mech Med Biol. 11(3):563–580. doi:10.1142/S0219519411004010.
  • Hernandez CJ, Gupta A, Keaveny TM. 2006. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res. 21(8):1248–1255. doi:10.1359/jbmr.060514.
  • Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM. 2002. Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J Biomech. 35(2):237–246. doi:10.1016/S0021-9290(01)00193-2.
  • Keaveny TM, Hayes WC. 1993. A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng. 115(4B):534–542. doi:10.1115/1.2895536.
  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC. 2001. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 3(1):307–333. doi:10.1146/annurev.bioeng.3.1.307.
  • Keaveny TM, Wachtel EF, Ford CM, Hayes WC. 1994. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech. 27(9):1137–1146. doi:10.1016/0021-9290(94)90054-X.
  • Kelly N, McGarry JP. 2012. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J Mech Behav Biomed Mater. 9:184–197. doi:10.1016/j.jmbbm.2011.11.013.
  • Khan AS. 1995. Continuum theory of plasticity. New York (NY): John Wiley & Sons.
  • Kopperdahl DL, Keaveny TM. 1998. Yield strain behavior of trabecular bone. J Biomech. 31(7):601–608. doi:10.1016/S0021-9290(98)00057-8.
  • Kosmopoulos V, Keller TS. 2003. Finite element modeling of trabecular bone damage. Comput Methods Biomech Biomed Eng. 6(3):209–216. doi:10.1080/1025584031000149089.
  • Lambers FM, Bouman AR, Rimnac CM, Hernandez CJ. 2013. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance. PLoS ONE. 8(12):e83662. doi:10.1371/journal.pone.0083662.
  • Leng H, Wang X, Ross RD, Niebur GL, Roeder RK. 2008. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent. J Mech Behav Biomed Mater. 1(1):68–75. doi:10.1016/j.jmbbm.2007.06.002.
  • Mercer C, He MY, Wang R, Evans AG. 2006. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater. 2(1):59–68. doi:10.1016/j.actbio.2005.08.004.
  • Morgan EF, Bayraktar HH, Yeh OC, Majumdar S, Burghardt A, Keaveny TM. 2004. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 37(9):1413–1420. doi:10.1016/j.jbiomech.2003.12.037.
  • Morgan EF, Keaveny TM. 2001. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 34(5):569–577. doi:10.1016/S0021-9290(01)00011-2.
  • Nagaraja S, Couse TL, Guldberg RE. 2005. Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech. 38(4):707–716. doi:10.1016/j.jbiomech.2004.05.013.
  • Nagaraja S, Lin ASP, Guldberg RE. 2007. Age-related changes in trabecular bone microdamage initiation. Bone. 40(4):973–980. doi:10.1016/j.bone.2006.10.028.
  • Nawathe S, Juillard F, Keaveny TM. 2013. Theoretical bounds for the influence of tissue-level ductility on the apparent-level strength of human trabecular bone. J Biomech. 46(7):1293–1299. doi:10.1016/j.jbiomech.2013.02.011.
  • Niebur GL, Feldstein MJ, Keaveny TM. 2002. Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng. 124(6):699–705. doi:10.1115/1.1517566.
  • Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. 2000. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 33(12):1575–1583. doi:10.1016/S0021-9290(00)00149-4.
  • Niebur GL, Yuen JC, Hsia AC, Keaveny TM. 1999. Convergence behavior of high-resolution finite element models of trabecular bone. J Biomech Eng. 121(6):629–635. doi:10.1115/1.2800865.
  • Pugh JW, Rose RM, Radin EL. 1973. A structural model for the mechanical behavior of trabecular bone. J Biomech. 6(6):657–670. doi:10.1016/0021-9290(73)90022-5.
  • Rice JC, Cowin SC, Bowman JA. 1988. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech. 21(2):155–168. doi:10.1016/0021-9290(88)90008-5.
  • Rincón-Kohli L, Zysset P. 2009. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. 8(3):195–208.
  • Sanyal A, Gupta A, Bayraktar HH, Kwon RY, Keaveny TM. 2012. Shear strength behavior of human trabecular bone. J Biomech. 45(15):2513–2519. doi:10.1016/j.jbiomech.2012.07.023.
  • Schwiedrzik JJ, Wolfram U, Zysset PK. 2013. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol. 12(6):1155–1168. doi:10.1007/s10237-013-0472-5.
  • Shi X, Liu XS, Wang X, Guo XE, Niebur GL. 2010a. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone. 46(5):1260–1266. doi:10.1016/j.bone.2010.02.005.
  • Shi X, Liu XS, Wang X, Guo XE, Niebur GL. 2010b. Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions. J Biomech. 43(13):2460–2466. doi:10.1016/j.jbiomech.2010.05.032.
  • Shi X, Wang X, Niebur G. 2009. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Ann Biomed Eng. 37(2):354–362. doi:10.1007/s10439-008-9619-4.
  • Silva MJ, Gibson LJ. 1997. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone. 21(2):191–199. doi:10.1016/S8756-3282(97)00100-2.
  • Stölken JS, Kinney JH. 2003. On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone. 33(4):494–504. doi:10.1016/S8756-3282(03)00214-X.
  • Tjong W, Kazakia GJ, Burghardt AJ, Majumdar S. 2012. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med Phys. 39(4):1893–1903. doi:10.1118/1.3689813.
  • Townsend PR, Rose RM, Radin EL. 1975. Buckling studies of single human trabeculae. J Biomech. 8(3–4):199–201. doi:10.1016/0021-9290(75)90025-1.
  • van Rietbergen B, Majumdar S, Pistoia W, Newitt DC, Kothari M, Laib A, Ruegsegger P. 1998a. Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. Technol Health Care. 6(5–6):413–420.
  • van Rietbergen B, Odgaard A, Kabel J, Huiskes R. 1998b. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res. 16(1):23–28. doi:10.1002/jor.1100160105.
  • Verhulp E, van Rietbergen B, Müller R, Huiskes R. 2008a. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech. 41(7):1479–1485. doi:10.1016/j.jbiomech.2008.02.032.
  • Verhulp E, van Rietbergen B, Müller R, Huiskes R. 2008b. Micro-finite element simulation of trabecular-bone post-yield behaviour – effects of material model, element size and type. Comput Methods Biomech Biomed Eng. 11(4):389–395. doi:10.1080/10255840701848756.
  • Wang X, Allen MR, Burr DB, Lavernia EJ, Jeremić B, Fyhrie DP. 2008. Identification of material parameters based on Mohr–Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone. Bone. 43(4):775–780. doi:10.1016/j.bone.2008.05.023.
  • Wang X, Masse DB, Leng H, Hess KP, Ross RD, Roeder RK, Niebur GL. 2007. Detection of trabecular bone microdamage by micro-computed tomography. J Biomech. 40(15):3397–3403. doi:10.1016/j.jbiomech.2007.05.009.
  • Wolfram U, Gross T, Pahr DH, Schwiedrzik J, Wilke HJ, Zysset PK. 2012. Fabric-based Tsai–Wu yield criteria for vertebral trabecular bone in stress and strain space. J Mech Behav Biomed Mater. 15:218–228. doi:10.1016/j.jmbbm.2012.07.005.
  • Wu Z, Laneve AJ, Niebur GL. 2013. In vivo microdamage is an indicator of susceptibility to initiation and propagation of microdamage in human femoral trabecular bone. Bone. 55(1):208–215. doi:10.1016/j.bone.2013.02.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.