475
Views
10
CrossRef citations to date
0
Altmetric
Articles

Computer simulation of orthodontic tooth movement using CT image-based voxel finite element models with the level set method

, &
Pages 474-483 | Received 07 Jun 2014, Accepted 15 Apr 2015, Published online: 28 Jul 2015

References

  • Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ. 2006. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials. 27(21):3964–3972. doi:10.1016/j.biomaterials.2006.02.039.
  • Ahn H, Ohe J, Lee S, Park Y, Kim S. 2014. Timing of force application affects the rate of tooth movement into surgical alveolar defects with grafts in beagles. Am J Orthod Dentofacial Orthop. 145(4):486–495. doi:10.1016/j.ajodo.2013.12.021.
  • Bister D, Meikle MC. 2013. Re-examination of ‘Einige Beitrage zur Theorie der Zahnregulierung’ (Some contributions to the theory of the regulation of teeth) published in 1904–1905 by Carl Sandstedt. Eur J Orthod. 35(2):160–168. doi:10.1093/ejo/cjs007.
  • Bourauel C, Vollmer D, Jäger A. 2000. Application of bone remodeling theories in the simulation of orthodontic tooth movements. J Orofac Orthop. 61(4):266–279. doi:10.1007/s000560050012.
  • Burstone CJ. 1988. The biophysics of bone remodeling during orthodontics-optimal force considerations. In: The biology of tooth movement. CRC Press, Boca Raton.
  • Crawford R, Rosenburg W, Keaveny T. 2003. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng. 125:434–438.
  • d'Apuzzo F, Cappabianca S, Ciavarella D, Monsurrò A, Silvestrini-Biavati A, Perillo L. 2013. Biomarkers of periodontal tissue remodeling during orthodontic tooth movement in mice and men: overview and clinical relevance. Sci World J. Article ID 105873, 8 pages.10.1155/2013/105873.
  • Farah JW, Craig RG, Sikarskie DL. 1973. Photoelastic and finite-element stress analysis of a restored axisymmetric first molar. J Biomech. 6(5):511–520. doi:10.1016/0021-9290(73)90009-2.
  • Follet H, Boivin G, Rumelhart C, Meunier PJ. 2004. The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone. 34(5):783–789. doi:10.1016/j.bone.2003.12.012.
  • Garlet TP, Coelho U, Repeke CE, Silva JS, Cunha FQ, Garlet GP. 2008. Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine. 42(3):330–335. doi:10.1016/j.cyto.2008.03.003.
  • Grimm FM. 1972. Bone bending, a feature of orthodontic tooth movement. Am J Orthod. 62(4):384–393. doi:10.1016/S0002-9416(72)90278-3.
  • Gualeni B, de Vernejoul MC, Marty-Morieux C, De Leonardis F, Franchi M, Monti L, Forlino A, Houillier P, Rossi A, Geoffroy V. 2013. Alteration of proteoglycan sulfation affects bone growth and remodeling. Bone. 54(1):83–91. doi:10.1016/j.bone.2013.01.036.
  • Guldberg R, Hollister S, Charras G. 1998. The accuracy of digital imagebased finite element models. J Biomech Eng. 120(2):289–295. doi:10.1115/1.2798314.
  • Hadjidakis DJ, Androulakis II. 2006. Bone remodeling. Ann NY Acad Sci. 1092(1):385–396. doi:10.1196/annals.1365.035.
  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC. 2001. Biomechanics of trabecular bone. Ann Rev Biomed Eng. 3(1):307–333. doi:10.1146/annurev.bioeng.3.1.307.
  • Kida N, Adachi T. 2014. Numerical analysis of arterial contraction regulated by smooth muscle stretch and intracellular calcium ion concentration. J Biomech Sci Eng. 9(1):JBSE0002-JBSE0002. doi:10.1299/jbse.2014jbse0002.
  • Kojima Y, Mizuno T, Umemura S, Fukui H. 2007. A numerical simulation of orthodontic tooth movement produced by a canine retraction spring. Dent Mater J. 26(4):561–567. doi:10.4012/dmj.26.561.
  • Kraus CD, Campbell PM, Spears R, Taylor RW, Buschang PH. 2014. Bony adaptation after expansion with light-to-moderate continuous forces. Am J Orthod Dentofacial Orthop. 145(5):655–666. doi:10.1016/j.ajodo.2014.01.017.
  • Krishnan V, Davidovitch Z. 2009. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 88(7):597–608. doi:10.1177/0022034509338914.
  • Limbert G, van Lierde C, Muraru OL, Walboomers XF, Frank M, Hansson S, Middleton J, Jaecques S. 2010. Trabecular bone strains around a dental implant and associated micromotions-A micro-CT-based three-dimensional finite element study. J Biomech. 43(7):1251–1261. doi:10.1016/j.jbiomech.2010.01.003.
  • Megat Abdul Wahab R, Md Dasor M, Senafi S, Abang Abdullah AA, Yamamoto Z, Jemain AA, Zainal Ariffin SH. 2013. Crevicular alkaline phosphatase activity and rate of tooth movement of female orthodontic subjects under different continuous force applications. Int J Dent. Article ID 245818, 7 pages.10.1155/2013/245818.
  • Mirzaei M, Keshavarzian M, Naeini V. 2014. Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method. Bone. 64:108–114. doi:10.1016/j.bone.2014.04.007.
  • Montero-Chacón F, Marín-Montín J, Medina F. 2014. Mesomechanical characterization of porosity in cementitious composites by means of a voxel-based finite element model. Comput Mater Sci. 90:157–170. doi:10.1016/j.commatsci.2014.03.066.
  • Moreira AC, Appoloni CR, Mantovani IF, Fernandes JS, Marques LC, Nagata R, Fernandes CP. 2012. Effects of manual threshold setting on image analysis results of a sandstone sample structural characterization by X-ray microtomography. Appl Radiat Isotopes. 70(6):937–941. doi:10.1016/j.apradiso.2012.03.001.
  • Morgan EF, Bayraktar HH, Keaveny TM. 2003. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. 36(7):897–904. doi:10.1016/S0021-9290(03)00071-X.
  • Oppenheim A. 1911. Tissue changes, particularly of the bone, incident to tooth movement. Am Orthod. 3(56–67):113–132.
  • Osher S, Sethian JA. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys. 79(1):12–49. doi:10.1016/0021-9991(88)90002-2.
  • Provatidis CG. 2003. A bone-remodelling SCHEME based on principal strains applied to a tooth during translation. Comput Methods Biomech Biomed Eng. 6(5–6):347–352. doi:10.1080/10253860310001640046.
  • Rody WJ, King GJ, Gu GM. 2001. Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 120(5):477–489. doi:10.1067/mod.2001.118623.
  • Rygh P, Bowling K, Hovlandsdal L, Williams S. 1986. Activation of the vascular system: a main mediator of periodontal fiber remodeling in orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 89(6):453–468. doi:10.1016/0002-9416(86)90001-1.
  • Sung SJ, Jang GW, Chun YS, Moon YS. 2010. Effective en-masse retraction design with orthodontic mini-implant anchorage: a finite element analysis. Am J Orthod Dentofacial Orthop. 137(5):648–657. doi:10.1016/j.ajodo.2008.06.036.
  • Tahmineh R, Mahdi N, Fakhri A, Ghazani. 2014. Relationship between hounsfield unit in CT scan and gray scale in CBCT. J Dent Res Dent Clin Dent Prospects. 8(2):107–110.
  • Uddanwadiker RV, Padole PM, Arya H. 2007. Effect of variation of root post in different layers of tooth: linear vs nonlinear finite element stress analysis. J Biosci Bioeng. 104(5):363–370. doi:10.1263/jbb.104.363.
  • Van Schepdael A, Vander Sloten J, Geris L. 2013. Mechanobiological modeling can explain orthodontic tooth movement: three case studies. J Biomech. 46(3): 470–477. doi:10.1016/j.jbiomech.2012.10.037.
  • Wise GE, King GJ. 2008. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 87(5):414–434. doi:10.1177/154405910808700509.
  • Wolf M, Lossdörfer S, Craveiro R, Götz W, Jäger A. 2013. Regulation of macrophage migration and activity by high-mobility group box 1 protein released from periodontal ligament cells during orthodontically induced periodontal repair: an in vitro and in vivo experimental study. J Orofac Orthop. 74(5):420–434. doi:10.1007/s00056-013-0167-7.
  • Ziegler A, Keilig L, Kawarizadeh A, Jäger A, Bourauel C. 2005. Numerical simulation of the biomechanical behaviour of multi-rooted teeth. Euro J Orthod. 27: 333–339. doi:10.1093/ejo/cji020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.