485
Views
7
CrossRef citations to date
0
Altmetric
Articles

Finite element prediction of fatigue damage growth in cancellous bone

, , &
Pages 563-570 | Received 14 Mar 2014, Accepted 04 May 2015, Published online: 16 Jun 2015

References

  • Barkaoui A, Hambli R. 2014. Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Method Biomech Biomed Eng. 17(14):1590–1601. doi:10.1080/10255842.2012.758255.
  • Barkaoui A, Hambli R, Tavares RS, Tavares J. 2015. Effect of material and structural factors on fracture behaviour of mineralised collagen microfibril using finite element simulation. Comput Methods Biomech Biomed Eng. 18(11):1181–1190. doi:10.1080/10255842.2014.883601.
  • Burr DB. 1993. Remodeling and the repair of fatigue damage. Calcified Tissue Int. 53(S1):S75–S81; discussion S80–S71. Epub 1993/01/01.10.1007/BF01673407.
  • Burr DB, Hooser M. 1995. Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone. 17(4):431–433. doi:10.1016/S8756-3282(95)00241-3.
  • Chaboche JL. 1981. Continuous damage mechanics – a tool to describe phenomena before crack initiation. Nucl Eng Des. 64(2):233–247. doi:10.1016/0029-5493(81)90007-8.
  • Dendorfer S, Maier HJ, Hammer J. 2009. Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale. J Mech Behav Biomed Mater. 2(1):113–119. doi:10.1016/j.jmbbm.2008.03.003.
  • Fyhrie DP, Schaffler MB. 1994. Failure mechanisms in human vertebral cancellous bone. Bone. 15(1):105–109. doi:10.1016/8756-3282(94)90900-8.
  • Hambli R. 2011a. Apparent damage accumulation in cancellous bone using neural networks. J Mech Behav Biomed Mater. 4(6):868–878. doi:10.1016/j.jmbbm.2011.03.002.
  • Hambli R. 2011b. Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. Int J Numer Methods Biomed Eng. 27(4):461–475. doi:10.1002/cnm.1413.
  • Hambli R. 2013. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone. 56(2):363–374. doi:10.1016/j.bone.2013.06.028.
  • Hambli R, Almitani KH, Chamekh A, Toumi H, Tavares JM. 2015. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study. Math Biosci. 30(262C):46–55.
  • Hambli R, Rieger R. 2012. Physiologically based mathematical model of transduction of mechanobiological signals by osteocytes. Biomech Model Mechanobiol. 11(1–2):83–93. doi:10.1007/s10237-011-0294-2.
  • Hambli R, Soulat D, Gasser A, Benhamou CL. 2009. Strain-damage coupled algorithm for cancellous bone mechano-regulation with spatial function influence. Comput Methods Appl Mech Eng. 198(33–36):2673–2682.
  • Hernandez CJ, Gupta A, Keaveny TM. 2006. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res. 21(8):1248–1255. doi:10.1359/jbmr.060514.
  • Hirano T, Turner CH, Burr DB. 1997. Effect of etidronate (EHDP) on bone turnover, microdamage accumulation and bone strength in dogs. J Bone Mineral Res. 12, S484-S484.
  • Homminga J, Van-Rietbergen B, Lochmüller E-M, Weinans H, Eckstein F, Huiskes R. 2004. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent error loads. Bone. 34(3):510–516. doi:10.1016/j.bone.2003.12.001.
  • Kosmopoulos V, Schizas C, Keller TS. 2008. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. J Biomech. 41(3):515–522. doi:10.1016/j.jbiomech.2007.10.020.
  • Lemaitre J. 1985. A continuous damage mechanics model for ductile fracture. J Eng Mater-T ASME. 107(1):83–89. doi:10.1115/1.3225775.
  • Martin RB, Burr DR, Sharkey NA. 1998. Skeletal tissue mechanics. New York: Springer.
  • McNamara BP, Taylor D, Prendergast PJ. 1997. Computer prediction of adaptive bone remodelling around noncemented femoral prostheses: the relationship between damage-based and strain-based algorithms. Med Eng Phys. 19(5):454–463. doi:10.1016/S1350-4533(97)00002-7.
  • McNamara LM, Prendergast JP. 2007. Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech. 40(6):1381–1391. doi:10.1016/j.jbiomech.2006.05.007.
  • Morgan EF, Yeh OC, Keaveny TM. 2005. Damage in trabecular bone at small strains. Eur J Morphol. 42(1-2):13–21. doi:10.1080/09243860500095273.
  • Prendergast PJ, Taylor D. 1994. Prediction of bone adaptation using damage accumulation. J Biomech. 27(8):1067–1076. doi:10.1016/0021-9290(94)90223-2.
  • Ridha R, Thurner P. 2013. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater. 27:94–106. doi:10.1016/j.jmbbm.2013.07.005.
  • Sobelman OS, Gibeling JC, Stover SM, Hazelwood SJ, Yeh OC, Shelton DR, Martin RB. 2004. Do microcracks decrease or increase fatigue resistance in cortical bone? J Biomech. 37(9):1295–1303. doi:10.1016/j.jbiomech.2003.12.034.
  • Taylor D, Hazenberg JG, Lee T. 2007. Living with cracks: Damage and repair in human bone. Nat Mater. 6(4):263–268. doi:10.1038/nmat1866.
  • Taylor D, Lee TC. 2003. A crack growth model for the simulation of fatigue in bone. Int J Fatigue. 25(5):387–395. doi:10.1016/S0142-1123(02)00165-2.
  • Taylor M, Cotton J, Zioupos P. 2002. Finite element simulation of the fatigue behaviour of cancellous bone. Meccanica. 37(4/5):419–429. doi:10.1023/A:1020848007201.
  • Taylor M, Tanner KE. 1997. Fatigue failure of cancellous bone: A possible cause of implant migration and loosening. J Bone Joint Surg Br. 79(2):181–182. doi:10.1302/0301-620X.79B2.7461.
  • Tsouknidas A, Maliaris G, Savvakis S, Michailidis N. 2015. Anisotropic post-yield response of cancellous bone simulated by stress-strain curves of bulk equivalent structures. Comput Methods Biomech Biomed Eng. 18(8):839–846. doi:10.1080/10255842.2013.849342.
  • Viceconti M, Olsen S, Nolte LP, Burton K. 2005. Extracting clinically relevant data from finite element simulations. Clin Biomech. 20(5):451–454. doi:10.1016/j.clinbiomech.2005.01.010.
  • Zioupos P, Wang XT, Currey JD. 1996. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J Biomech. 29(8):989–1002. doi:10.1016/0021-9290(96)00001-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.