781
Views
20
CrossRef citations to date
0
Altmetric
Articles

The effects of plaque morphology and material properties on peak cap stress in human coronary arteries

, , , , , , , & show all
Pages 771-779 | Received 12 Nov 2014, Accepted 10 Jun 2015, Published online: 03 Aug 2015

References

  • Akyildiz AC, Speelman L, Gijsen FJ. 2014. Mechanical properties of human atherosclerotic intima tissue. J Biomech. 47:773–783. Epub 2014/02/18.
  • Akyildiz AC, Speelman L, van Brummelen H, Gutierrez MA, Virmani R, van der Lugt A, van der Steen AF, Wentzel JJ, Gijsen FJ. 2011. Effects of intima stiffness and plaque morphology on peak cap stress. Biomed Eng Online. 10:25. Epub 2011/04/12.
  • Baldewsing RA, de Korte CL, Schaar JA, Mastik F, van der Steen AF. 2004. A finite element model for performing intravascular ultrasound elastography of human atherosclerotic coronary arteries. Ultrasound Med Biol. 30:803–813. Epub 2004/06/29.
  • Balzani D, Bose D, Brands D, Erbel R, Klawonn A, Rheinbach O, Schroder J. 2012. Parallel simulation of patient-specific atherosclerotic arteries for the enhancement of intravascular ultrasound diagnostics. Eng Comput. 29:888–906.
  • Chai CK, Akyildiz AC, Speelman L, Gijsen FJ, Oomens CW, van Sambeek MR, van der Lugt A, Baaijens FP. 2013. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. J Biomech. 46:1759–1766. Epub 2013/05/15.
  • Chai CK, Speelman L, Oomens CW, Baaijens FP. 2014. Compressive mechanical properties of atherosclerotic plaques–indentation test to characterise the local anisotropic behaviour. J Biomech. 47:784–792. Epub 2014/02/01.
  • Chau AH, Chan RC, Shishkov M, MacNeill B, Iftimia N, Tearney GJ, Kamm RD, Bouma BE, Kaazempur-Mofrad MR. 2004. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann Biomed Eng. 32:1494–1503. Epub 2005/01/08.
  • Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. 1993. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation. 87:1179–1187. Epub 1993/04/01.
  • Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. 1993. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J. 69:377–381. Epub 1993/05/01.
  • Falk E. 2006. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47:C7–C12. Epub 2006/04/25.
  • Finet G, Ohayon J, Rioufol G. 2004. Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis. 15:13–20. Epub 2004/06/18.
  • Franquet A, Avril S, Le Riche R, Badel P. 2011. Identification of heterogeneous elastic properties in stenosed arteries: a numerical plane strain study. Comput Methods Biomech Biomed Eng. 15:49–58. Epub 2011/05/25.
  • Holzapfel GA. 2000. Nonlinear solid mechanics: a continuum approach for engineering. Chichester; New York: Wiley.
  • Holzapfel GA, Mulvihill JJ, Cunnane EM, Walsh MT. 2014. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech. 47:859–869. Epub 2014/02/05.
  • Holzapfel GA, Sommer G, Gasser CT, Regitnig P. 2005. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart C. 289:H2048–H2058.
  • Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. 2001. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 103:1051–1056. Epub 2001/02/27.
  • Imoto K, Hiro T, Fujii T, Murashige A, Fukumoto Y, Hashimoto G, Okamura T, Yamada J, Mori K, Matsuzaki M. 2005. Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging. J Am Coll Cardiol. 46:1507–1515. Epub 2001/02/27.
  • Lendon CL, Davies MJ, Born GV, Richardson PD. 1991. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis. 87:87–90. Epub 1991/03/01.
  • Liang X, Xenos M, Alemu Y, Rambhia SH, Lavi I, Kornowski R, Gruberg L, Fuchs S, Einav S, Bluestein D. 2013. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid–structure interaction studies. Coron Artery Dis. 24:75–87. Epub 2013/02/01.
  • Loree HM, Kamm RD, Stringfellow RG, Lee RT. 1992. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res. 71:850–858. Epub 1992/10/01.
  • Maldonado N, Kelly-Arnold A, Vengrenyuk Y, Laudier D, Fallon JT, Virmani R, Cardoso L, Weinbaum S. 2012. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol. 303:H619–H628. Epub 2012/07/11.
  • Nederveen AJ, Avril S, Speelman L. 2014. MRI strain imaging of the carotid artery: present limitations and future challenges. J Biomech. 47:824–833. Epub 2014/01/29.
  • Nieuwstadt HA, Akyildiz AC, Speelman L, Virmani R, van der Lugt A, van der Steen AF, Wentzel JJ, Gijsen FJ. 2012. The influence of axial image resolution on atherosclerotic plaque stress computations. J Biomech. 46:689–695. Epub 2012/12/25.
  • Nieuwstadt HA, Geraedts TR, Truijman MT, Kooi ME, van der Lugt A, van der Steen AF, Wentzel JJ, Breeuwer M, Gijsen FJ. 2013. Numerical simulations of carotid MRI quantify the accuracy in measuring atherosclerotic plaque components in vivo. Magn Reson Med. 72:188–201. Epub 2013/08/15.
  • Nieuwstadt HA, Speelman L, Breeuwer M, van der Lugt A, van der Steen AF, Wentzel JJ, Gijsen FJ. 2013. The influence of inaccuracies in carotid MRI segmentation on atherosclerotic plaque stress computations. J Biomech Eng. 136, 021015. Epub 2013/12/10.
  • Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J, Rioufol G, Kotys MS, Elagha A, Pettigrew RI. 2008. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol. 295:H717–H727. Epub 2008/07/01.
  • Ohayon J, Mesnier N, Broisat A, Toczek J, Riou L, Tracqui P. 2012. Elucidating atherosclerotic vulnerable plaque rupture by modeling cross substitution of ApoE-/-mouse and human plaque components stiffnesses. Biomech Model Mechanobiol. 11:801–813. Epub 2011/10/12.
  • Riou LM, Broisat A, Ghezzi C, Finet G, Rioufol G, Gharib AM, Pettigrew RI, Ohayon J. 2014. Effects of mechanical properties and atherosclerotic artery size on biomechanical plaque disruption – mouse vs. human. J Biomech. 47:765–772. Epub 2014/02/05.
  • Schroder J, Brinkhues S. 2014. A novel scheme for the approximation of residual stresses in arterial walls. Arch Appl Mech. 84:881–898.
  • Speelman L, Akyildiz AC, den Adel B, Wentzel JJ, van der Steen AF, Virmani R, van der Weerd L, Jukema JW, Poelmann RE, van Brummelen EH, Gijsen FJ. 2011. Initial stress in biomechanical models of atherosclerotic plaques. J Biomech. 44: 2376–2382.
  • Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN. 2009. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng. 131, 061010. Epub 2009/05/20.
  • Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, et al. 2012. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 59:1058–1072. Epub 2012/03/17.
  • Teng Z, Sadat U, Li Z, Huang X, Zhu C, Young VE, Graves MJ, Gillard JH. 2010. Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo MRI-based 2D finite-element study. Ann Biomed Eng. 38:3096–3101. Epub 2010/05/26.
  • Vengrenyuk Y, Cardoso L, Weinbaum S. 2008. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol Cell Biomech. 5:37–47. Epub 2008/06/06.
  • Virmani R, Burke AP, Farb A, Kolodgie FD. 2006. Pathology of the vulnerable plaque. J Am Coll Cardiol. 47:C13–C18. Epub 2006/04/25.
  • von Birgelen C, Klinkhart W, Mintz GS, Papatheodorou A, Herrmann J, Baumgart D, Haude M, Wieneke H, Ge J, Erbel R. 2001. Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol. 37:1864–1870. Epub 2001/06/13.
  • Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazempur-Mofrad MR, Kamm RD. 2003. On the sensitivity of wall stresses in diseased arteries to variable material properties. J Biomech Eng. 125:147–155. Epub 2003/03/29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.