612
Views
26
CrossRef citations to date
0
Altmetric
Articles

Finite element modelling approaches for well-ordered porous metallic materials for orthopaedic applications: cost effectiveness and geometrical considerations

&
Pages 845-854 | Received 15 Oct 2014, Accepted 17 Jul 2015, Published online: 10 Aug 2015

References

  • Ahmadi SM, Campoli G, Yavari SA, Sajadi B, Wauthle R, Schrooten J, Weinans H, Zadpoor AA. 2014. Mechanical behavior of open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater. 34:106–115. doi:10.1016/j.jmbbm.2014.02.003.
  • Arabnejad S, Pasini D. 2012. Multiscale design and multiobjective optimization of orthopedic hip implants with funcionally graded cellular material. J Biomech Eng. 134:1–10. doi:10.1115/1.4006115.
  • Arabnejad S, Pasini D. 2013. Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int J Mech Sci. 77:249–262. doi:10.1016/j.ijmecsci.2013.10.003.
  • ARCAM AB. Ti6Al4V ELI titanium alloy. Available from: http://www.arcam.com/wp-content/uploads/Arcam-Ti6Al4V-ELI-Titanium-Alloy.pdf.
  • Babaee S, Jahromi BH, Adjari A, Hashemi-Nayeb H, Vaziri A. 2012. Mechanical properties of open-cell rhombic dodecahedron cellular structures. Acta Mater. 60:2873–2885. doi:10.1016/j.actamat.2012.01.052.
  • Campoli C, Borleffs MS, Yavari SA, Wauthle R, Weinans H, Zadpoor AA. 2013. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des. 49:957–965.
  • Dai G, Zhang W. 2009. Size effects of effective Young’s modulus for periodic cellular materials. Sci China Ser G Phys Mech Astron. 52:1262–1270. doi:10.1007/s11433-009-0151-9.
  • Delaunay CP, Bonnomet F, Clavert P, Laffargue P, Migaud H. 2008. THA using metal-on-metal articulation in active patients younger than 50 years. Clin Oprthop Relat Res. 466:340–346. doi:10.1007/s11999-007-0045-y.
  • El Ghezal MI, Maalej Y, Doghri I. 2013. Micromechanical models for porous and cellular materials in linear elasticity and viscoelasticity. Comput Mater Sci. 70:51–70. doi:10.1016/j.commatsci.2012.12.021.
  • Gibson LJ. 2005. Biomechanics of cellular solids. J Biomech. 38:377–399. doi:10.1016/j.jbiomech.2004.09.027.
  • Harrysson OL, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA II. 2008. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C. 28:366–373. doi:10.1016/j.msec.2007.04.022.
  • Hazlehurst K, Wang CJ, Stanford M. 2013. Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications. Mater Des. 51:949–955. doi:10.1016/j.matdes.2013.05.009.
  • Heinl P, Rottmair A, Körner C, Singer RF. 2007. Cellular titanium by selective electron beam melting. Adv Eng Mater. 9:360–364. doi:10.1002/adem.200700025.
  • Herrera A, Yánez A, Martel O, Afonso H, Monopoli D. 2014. Computational study and experimental validation of porous structures fabricated by electron beam melting: a challenge to avoid stress shielding. Mater Sci Eng C. 45:89–93. doi:10.1016/j.msec.2014.08.050.
  • Huiskes R, Weinans H, Van Rietbergen B. 1992. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 274:124–134.
  • Karamooz Ravari MR, Kadkhodaei M. 2015. A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures. J Mater Eng Perform. 24:245–252. doi:10.1007/s11665-014-1281-4.
  • Kouznetsova VG. 2002. Computational homogenization for the multi-scale analysis of multi-phase materials. Eindhoven: Technische Universiteit Eindhoven. ISBN 90-386-2734-3.
  • Kuiper JH, Huiskes R. 1997. Mathematical optimization of elastic properties: application to cementless hip stem design. J Biomech Eng. 119:166–174. doi:10.1115/1.2796076.
  • Luxner MH, Stampfl J, Pettermann H. 2007. Numerical simulations of 3D open cell structures – influence of structural irregularities on elastoplasticity and deformation localization. Int J Solids Struct. 44:2990–3003. doi:10.1016/j.ijsolstr.2006.08.039.
  • Luxner MH, Stampfl J, Pettermann HE. 2005. Finite element modeling concepts and linear analyses of 3D regular open cell structures. J Mater Sci. 40:5859–5866. doi:10.1007/s10853-005-5020-y.
  • Luxner MH, Woesz A, Stampfl J, Fratzl P, Pettermann HE. 2009. A finite element study on the effects of disorder in cellular structures. Acta Biomater. 5:381–390. doi:10.1016/j.actbio.2008.07.025.
  • Maalej Y, El Ghezal MI, Doghri I. 2013. Micromechanical approach for the behaviour of open cell foams. Eur J Comput Mech. 22:198–208. doi:10.1080/17797179.2013.820979.
  • Murr LE, Amato KN, Li SJ, Tian YX, Cheng XY, Gaytan SM, Martinez E, Shindo PW, Medina F, Wicker RB. 2011. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 4:1396–1411. doi:10.1016/j.jmbbm.2011.05.010.
  • Onck PR, Andrews EW, Gibson LJ. 2001. Size effects in ductile cellular solids. Part I: modeling. Int J Mech Sci. 43:681–699. doi:10.1016/S0020-7403(00)00042-4.
  • Parthasarathy J, Starly B, Raman S. 2011. A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process. 13:160–170. doi:10.1016/j.jmapro.2011.01.004.
  • Parthasarathy J, Starly B, Raman S, Christensen A. 2010. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 3:249–259. doi:10.1016/j.jmbbm.2009.10.006.
  • Queheillalt DT, Wadley HN. 2005. Cellular metal lattices with hollow trusses. Acta Mater. 53:303–313. doi:10.1016/j.actamat.2004.09.024.
  • Smith M, Guan Z, Cantwell WJ. 2013. Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci. 67:28–41. doi:10.1016/j.ijmecsci.2012.12.004.
  • van der Sluis O, Schreurs P, Brekelmans W, Meijer H. 2000. Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mech Mater. 32:449–462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.