247
Views
1
CrossRef citations to date
0
Altmetric
Articles

Fluid-solid interaction in arteries incorporating the autoregulation concept in boundary conditions

&
Pages 985-1001 | Received 07 Jul 2014, Accepted 17 Aug 2015, Published online: 24 Sep 2015

References

  • Afkari D, Gabaldón F, Rodríguez J. 2014. Comparison of implicit and explicit FSI coupling strategies in cardiovascular system. In IV Reunión del Capítulo Español de la Sociedad Europea de Biomecánica (ESB); 20--21 November; Valencia, Spain.
  • Artoli A, Hoekstra A, Sloot P. 2006. Mesoscopic simulations of systolic flow in the human abdominal aorta. J Biomech. 39: 873–884.
  • Avolio AP. 1980. Multi-branched model of the human arterial system. Med Biol Eng Comput. 18: 709–709--718.
  • Bailevs Y, Gohean JR, Hughes TJR, Moseer RD, Zhang Y. 2009. Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng. 198: 3534–3550.
  • Beller CJ, Labrosse MR, Thubrikar MJ, Szabo G, Robicsek F, Hagl S. 2005. Increased aortic wall stress in aortic insufficiency: clinical data and computer model. Eur J. Cardio-thoracic Surg. 27: 270–275.
  • Borghi A, Wooda N, Mohiaddinb R, Xua X. 2008. Fluid-solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: A patient-specific study. J Fluids Struct. 24: 270–280.
  • Brezzi F, Fortin M. 1991. Mixed and hybrid finite element methods. Vol. 15, Springer series in computational mathematics. New York (NY): Springer.
  • Brezzi F, Lipnikov K, Shashkov M. 2005. New discretization methodology for diffusion problems on polyhedral meshes. T-7, MS B284. Theoretical Division, Los Alamos National Laboratory.
  • Brown AG, Shi Y, Marzo A, Staicu C, Valverde I, Beerbaum P, Lawford PV, Hose DR. 2012. Accuracy vs. computational time: Translating aortic simulations to the clinic. J Biomech. 45: 516–523.
  • Burman E, Fernández MA. 2009. Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput Meth Appl Mech Eng. 198: 766–784.
  • Calvo FJ, 2006. Simulación del fluido sanguíneo y su interacción con la pared arterial mediante modelos de elementos finitos [Simulation of blood flow and its interaction with arterial wall using finite element methods] [doctoral thesis]. UPM: Madrid.
  • CD-adapco. 2012. Cd-adapco, star-ccm+. Melville, NY: CD-adapco.
  • Demiray H. 1972. On the elasticity of soft biological tissues. J Biomech. 5: 241–311.
  • Figueroa CA, Baek S, Taylor CA, Humphrey JD. 2009. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng. 198: 3583–3602.
  • Figueroa CA, Taylor CA, Chiou AJ, Yeh V, Zarins CK. 2009. Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J Endovascular Therapy. 16:350–358.
  • Gao F, Watanabe M, Matsuzawa T. 2009. Fluid-structure interaction within 3-layered aortic arch model under pulsatile blood flow. In Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT05); Computer Society. Dalian, China.
  • García-Herrera C. 2008. Comportamiento mecánico de la aorta ascendente: Caracterización experimental y simulación Numérica [Mechanical behaviour of ascending aorta: experimental characterization and numerical simulation] [doctoral thesis]. España: Departamento de Mecánica de Medios Continuos y Teoría de Estructuras, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid.
  • Gerbeau J-F, Vidrascu M, Frey P. 2005. Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct. 83: 155–165.
  • Huang RF, Yang T-F, Lan Y-K. 2010. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches. Exp Fluids. 48: 497–508.
  • Khanafer K, Berguer R. 2009. Fluid structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech. 42: 2642–2648.
  • Kilner P, Yang G, Mohiaddin R, Firmin D, Longmore D. 1993. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation J Am Heart Assoc. 88: 2235–2247.
  • Kim H, Figueroa C, Hughes T, Jansen K, Taylor C. 2009. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput Methods Appl Mech Eng. 198: 3551–3566.
  • Kim H, Vignon-Clementel I, Figueroa C, LaDisa J, Jansen K, Feinstein J, Taylor C. 2009. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng. 37:2153–2169.
  • Klipstein RH, Firmin DN, Underwood SR, Rees RS, Longmore DB. 1987. Blood flow patterns in the human aorta studied by magnetic resonance. British Heart J. 58: 316–323.
  • Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA. 2010. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng. 38: 1288–1313.
  • Malvé M, del Palomar AP, Chandra S, López-Villalobos J, Mena A, Finol EA, Ginel A, Doblaré M. 2001. FSI analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions. J Biomech Eng. 133.
  • Malvé M, García A, Ohayon J, Martínez M. 2012. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD. Int Commun Heat Mass Transfer. 39: 745–751.
  • Mazzaro L, Almasi SJ, Shandas R, Seals DR, Gates PE. 2005. Aortic input impedance increases with age in healthy men and women. J Am Heart Assoc Hypertens. 45:1101–1106.
  • Milnor WR. 1975. Arterial impedance as ventricular afterload. Circulation Res J Am Heart Assoc. 36: 565–570.
  • Moireau P, Xiao N, Astorino M, Figueroa C, Chapelle D, Taylor C, Gerbeau J-F. 2011. External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol. 11: 1–18.
  • Murgo J, Westerhof N, Giolma J, Altobelli S. 1980. Aortic input impedance in normal man: relationship to pressure wave forms. Criculation J Am Heart Assoc. 62: 105–116.
  • Nicholas WW, O’Rourke MF. 2005. McDonald’s blood flow in arteriess. 5th ed. Hodder Arnold. London. ISBN:0340809418/0-340-80941-8.
  • Olufsen MS. 1998. Modeling the arterial system with reference to an anesthesia simulator [doctoral thesis]. Denmark: Department of Mathematics, Roskilde University.
  • O’Rourke MF, Taylor MG. 1967. Input impedance of the systemic circulation. Criculation Res J Am Heart Assoc. 20:365–380.
  • Papaharilaou Y, Ekaterinaris JA, Manousaki E, Katsamouris AN. 2007. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J Biomech. 40: 367–377.
  • Polindara C, Blanco S. Goicolea J. 2013. Nuevos desarrollos en la caracterización geométrica y determinación de índices de ruptura de las paredes arteriales. CMN2013; Bilbao, Spain.
  • Qiao A, Liu Y. 2008. Medical application oriented blood flow simulation. Clin Biomech. 23: S130–S136.
  • Scotti CM, Cornejo SL, Finol EA. 2007. Biomechanics of abdominal aortic aneurysms: flow-induced wall stress distribution. ICCES. 1: 41–47.
  • Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutaganira T. 2002. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng. 124: 516–523.
  • Sharp MK, Pantalos GM, Minich L, Tani LY, McGough EC, Hawkins JA. 2000. Aortic input impedance in infants and children. J Appl Physiol. 88: 2227–2239.
  • SIMULIA. 2014. Abaqus users’ manual v6.14. SIMULIA.
  • Suo J. 2005. Investigation of blood flow patterns and hemodynamics in the human ascending aorta and major trunks of right and left coronary arteries using magnetic resonance imaging and computational fluid dynamics [doctoral thesis]. School of Biomedical Engineering, Georgia Institute of Technology, Atlanda.
  • Tan F, Borghi A, Mohiaddin R, Wooda N, Thom S, Xu X. 2009. Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model. Comput Struct. 87: 680–690.
  • Taylor CA, Hughes TJR, Zarins CK. 1998. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng. 26: 975–987.
  • Urquiza S, Blanco P, Vénere M, Feijóo R. 2006. Multidimensional modelling for the carotid artery blood flow. Comput Methods Appl Mech Eng. 195: 4002–4017.
  • Vignon-Clementel IE. 2006. A coupled multidomain method for computational modeling of blood flow [doctoral thesis]. CA: Mechanical Engineering Department, Stanford University. Stanford, California.
  • Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. 2010. Outflow boundary conditions for 3d simulations of non-periodic blood flow and pressure fields in deformable arteriess. Comput Methods Biomech Biomed Eng. 13: 1–16.
  • Vlachopoulos C, O’Rourke M. 2000a. Current problems in cardiology. Medical Professional Unit. Sydney: St. Vincent’s Hospital, U. New South Wales.
  • Vlachopoulos C, O’Rourke M. 2000b. Current problems in cardiology, genesis of the normal and abnormal arterial pulse. Sydney: Mosby, University of New South Wales.
  • Votta E, Guiducci L, Morbiducci U, Redaelli A. 2008. Numerical sensitivity analysis of mechanical factors triggering aortic arch tearing. J Biomech. 16th ESB Congress Oral Presentation. Volume 41, Supplement 1, Page S39.
  • Zhao S, Xu X, Hughes A, Thom S, Stanton A, Ariff B, Long Q. 2000. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech. 33: 975–984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.