152
Views
6
CrossRef citations to date
0
Altmetric
Articles

A numerical solution of the mechanical bidomain model

&
Pages 1099-1106 | Received 08 Nov 2014, Accepted 06 Oct 2015, Published online: 26 Nov 2015

References

  • Bovendeerd PHM. 2012. Modeling of cardiac growth and remodeling of myofiber orientation. J Biomech. 45:872–881.10.1016/j.jbiomech.2011.11.029
  • Dabiri BE, Lee H, Parker KK. 2012. A potential role for integrin signaling in mechanoelectrical feedback. Prog Biophys Mol Biol. 110:196–203.10.1016/j.pbiomolbio.2012.07.002
  • Fung YC. 1981. Biomechanics: mechanical properties of living tissues. New York (NY): Springer-Verlag.10.1007/978-1-4757-1752-5
  • Gandhi S, Lwin P, Roth BJ. 2014. A numerical method to solve the mechanical bidomain model of cardiac tissue. Michigan Academy of Science, Arts & Letters Conference; 2014 Feb 28; Rochester, MI.
  • Genet M, Lee LC, Nguyen R, Haraldsson H, Acevedo-Bolton G, Zhang ZH, Ge L, Ordovas K, Kozerke S, Guccione JM. 2014. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J Appl Physiol. 117:142–152.10.1152/japplphysiol.00255.2014
  • Guccione JM, McCulloch AD. 1991. Finite element modeling of ventricular mechanics. In: Glass L, Hunter P, McCulloch A, editors. Theory of heart. New York (NY): Springer-Verlag; p. 121–144.10.1007/978-1-4612-3118-9
  • Humphrey JD. 2001. Stress, strain, and mechanotransduction in cells. J Biomech Eng. 123:638–641.10.1115/1.1406131
  • Jaalouk DE, Lammerding J. 2009. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 10:63–73.10.1038/nrm2597
  • Jackson BM, Gorman JH III, Moainie SL, Guy S, Narula N, Narula J, St John-Sutton MG, Edmunds H, Gorman RC. 2002. Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol. 40:1160–1167.10.1016/S0735-1097(02)02121-6
  • Katsumi A, Orr AW, Tzima E, Schwartz MA. 2004. Integrins in mechanotransduction. J Biol Chem. 279:12001–12004.10.1074/jbc.R300038200
  • Kroon W, Delhaas T, Bovendeerd P, Arts T. 2009. Computational analysis of the myocardial structure: adaptation of cardiac myofiber orientations through deformation. Med Imag Anal. 13:346–353.10.1016/j.media.2008.06.015
  • Latimer DC, Roth BJ, Parker KK. 2003. Analytical model for predicting mechanotransduction effects in engineered cardiac tissue. Tissue Eng. 9:283–289.10.1089/107632703764664747
  • McCain ML, Parker KK. 2011. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch Eur J Physiol. 462:89–104.10.1007/s00424-011-0951-4
  • Omens JH. 1998. Stress and strain as regulators of myocardial growth. Prog Biophys Mol Biol. 69:559–572.10.1016/S0079-6107(98)00025-X
  • Orr AW, Helmke BP, Blackman BR, Schwartz MA. 2006. Mechanisms of mechanotransduction. Dev Cell. 10:11–20.10.1016/j.devcel.2005.12.006
  • Parker KK, Ingber DE. 2007. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Phil Trans R Soc B. 362:1267–1279.10.1098/rstb.2007.2114
  • Press WH, Teukolsky SA, Vetterling WT, Flanery BP. 2001. Numerical recipes in Fortran 77: the art of scientific computing. 2nd ed. Cambridge (MA): Cambridge University Press.
  • Punal VM, Roth BJ. 2012. A perturbation solution of the mechanical bidomain model. Biomech Model Mechanobiol. 11:995–1000.10.1007/s10237-011-0368-1
  • Puwal S. 2013. Two-domain mechanics of a spherical, single chamber heart with applications to specific cardiac pathologies. SpringerPlus. 2:187.10.1186/2193-1801-2-187
  • Puwal S, Roth BJ. 2010. Mechanical bidomain model of cardiac tissue. Phys Rev E. 82: 041904.10.1103/PhysRevE.82.041904
  • Ratcliffe MB. 2002. Non-ischemic infarct extension: a new type of infarct enlargement and a potential therapeutic target. J Am Coll Caridiol. 40:1168–1171.10.1016/S0735-1097(02)02113-7
  • Rodriguez F, Langer F, Harrington KB, Cheng A, Daughters GT, Criscione JC, Ingels NB, Miller DC. 2005. Alterations in transmural strains adjacent to ischemic myocardium during acute midcircumflex occlusion. J Thorac Cardiovasc Surg. 129:791–803.10.1016/j.jtcvs.2004.11.011
  • Roth BJ. 2013a. The mechanical bidomain model: a review. ISRN Tissue Eng. 2013:863689.
  • Roth BJ. 2013b. Boundary layers and the distribution of membrane forces predicted by the mechanical bidomain model. Mech Res Commun. 50:12–16.10.1016/j.mechrescom.2013.02.004
  • Roth BJ. 2015. Using the mechanical bidomain model to analyze the biomechanical behavior of cardiomyocytes. In: Skuse GR, Ferran MC, editors. Cardiomyocytes: methods and protocols. New York (NY): Springer; p. 93–102.10.1007/978-1-4939-2572-8
  • Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 59:551–571.10.1146/annurev.physiol.59.1.551
  • Sharma K, Roth BJ. 2014. How compressibility influences the mechanical bidomain model. BIOMATH. 3:141171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.