946
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study of wall shear stress-based descriptors in the human left coronary artery

&
Pages 1443-1455 | Received 05 Jun 2015, Accepted 29 Jan 2016, Published online: 17 Feb 2016

References

  • Chaichana T, Sun Z, Jewkes J. 2011. Computation of hemodynamics in the left coronary artery with variable angulations. J Biomech. 44:1869–1878.10.1016/j.jbiomech.2011.04.033
  • Chaichana T, Sun Z, Jewkes J. 2012. Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput Math Methods Med. 2012. doi:10.1155/2012/504367.
  • Chaichana T, Sun Z, Jewkes J. 2013. Haemodynamic analysis of the effect of different types of plaques in the left coronary artery. Comput Med Imaging Graph. 37:197–206.10.1016/j.compmedimag.2013.02.001
  • Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cárdenes R, Larrabide I, Migliavacca F. 2013. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. Interface. 84. doi:10.1098/rsif.2013.0193.
  • De Santis G, Conti M, Trachet B, Schryver TDe, Beule MDe, Degroote J, Vierendeels J, Auricchio F, Segers P, Verdonck P, Verhegghe B. 2011. Haemodynamic impact of stent-vessel (mal) apposition following carotid artery stenting: mind the gap! Comput Methods Biomech Biomed Eng. 16: 648–659. doi:10.1080/10255842.2011.629997.
  • Dodge JT Jr, Brown BG, Bolson EL, Dodge HT. 1992. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246.10.1161/01.CIR.86.1.232
  • Dombe DD, Anitha T, Giri PA, Dombe SD, Ambiye MV. 2012. Clinically relevant morphometricanalysis of left coronary artery. Int J Biol Med Res. 3:1327–1330.
  • Ene-Iordache B, Remuzzi A. 2012. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis. Nephrol Dial Transplant. 27:358–368.10.1093/ndt/gfr342
  • Fajadet J, Chieffo A. 2012. Current management of left main coronary artery disease. Eur Heart J. 33:36–50.10.1093/eurheartj/ehr426
  • Fluent Meshing®/ANSYS® 14.5, Tutorial Guide. 2013.
  • Frattolin J, Zarandi MM, Pagiatakis C, Bertrand OF, Mongrain R. 2015. Numerical study of stenotic side branch hemodynamics in true bifurcation lesions. Comput Biol Med. 57:130–138.10.1016/j.compbiomed.2014.11.014
  • Gallo D, Steinman DA, Bijari PB, Morbiducci U. 2012. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J Biomech. 45:2398–2404.10.1016/j.jbiomech.2012.07.007
  • Gallo D, Steinman DA, Morbiducci U. 2015. An insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation. Ann Biomed Eng. 43:68–81.10.1007/s10439-014-1119-0
  • Gijsen FJ, Schuurbiers JC, van de Giessen AG, Schaap M, van der Steen AF, Wentzel JJ. 2014. 3D reconstruction techniques of human coronary bifurcations for shear stress computations. J Biomech. 47:39–43.10.1016/j.jbiomech.2013.10.021
  • He XJ, Ku DN. 1996. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng. 118:74–82.10.1115/1.2795948
  • Issa RI. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys. 62:40–65.10.1016/0021-9991(86)90099-9
  • Lee SW, Antiga L, Spence JD, Steinman DA. 2008. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke. 39:2341–2347.10.1161/STROKEAHA.107.510644
  • Lee SW, Antiga L, Steinman DA. 2009. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng. 131:1–7.
  • Leonard BP. 1995. Order of accuracy of QUICK and related convection-diffusion schemes. App Math Model. 19:640–653.10.1016/0307-904X(95)00084-W
  • Malek AM, Alper SL, Izumo S. 1999. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc. 282:2035–2042.10.1001/jama.282.21.2035
  • Malvè M, García A, Ohayon J, Martínez MA. 2012. Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD. Int Commun Heat Mass Transfer. 39:745–751.10.1016/j.icheatmasstransfer.2012.04.009
  • Malvè M, Gharib AM, Yazdani SK, Finet G, Martínez MA, Pettigrew R, Ohayon J. 2015. Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements. Ann Biomed Eng. 43:82–93.10.1007/s10439-014-1056-y
  • McAlpine WA. 1975. Heart and coronary arteries: an anatomical atlas for clinical diagnosis, radiological investigation, and surgical treatment. 7th ed. New York (NY): Springer-Verlag.10.1007/978-3-642-65983-6
  • Molony DS, Timmins LH, Hung OY, Rasoul-Arzrumly E, Samady H, Giddens DP. 2015. An assessment of intra-patient variability on observed relationships between wall shear stress and plaque progression in coronary arteries. Biomed Eng. ( Online). 14:1–14.
  • Morbiducci U, Gallo D, Massai D, Ponzini R, Deriu MA, Antiga L, Redaelli A, Montevecchi FM. 2011. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J Biomech. 44:2427–2438.10.1016/j.jbiomech.2011.06.028
  • Morbiducci U, Ponzini R, Gallo D, Bignardi C, Rizzo G. 2013. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J Biomech. 46:102–109.10.1016/j.jbiomech.2012.10.012
  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, De Ferranti S, Després J-P, Fullerton HJ, Howard VJ, et al. 2015. Heart disease and stroke statistics. Circulation. 131:e29–e322.10.1161/CIR.0000000000000152
  • Murray C. 1926. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proceed Nat Acad Sci USA. 12:207–214.10.1073/pnas.12.3.207
  • Olgac U, Poulikakos D, Saur SC, Alkadhi H, Kurtcuoglu V. 2009. Patient-specific three-dimensional simulation of LDL accumulation in a human left coronary artery in its healthy and atherosclerotic states. Am J Physiol Heart Circ Physiol. 296:H1969–H1982.10.1152/ajpheart.01182.2008
  • Reig J, Petit M. 2004. Main trunk of the left coronary artery: anatomic study of the parameters of clinical interest. Clin Anat. 17:6–13.10.1002/(ISSN)1098-2353
  • Samady H, Eshtehardi P, McDaniel M, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP. 2011. Coronary artery wall shear stress is associated with progression and transformation of atherosclerosis plaque and arterial remodeling in patients with coronary artery disease. Circulation. 124:779–788.
  • Soulis JV, Farmakis TM, Giannoglou GD, Louridas GE. 2006. Wall shear stress in normal left coronary artery tree. J Biomech. 39:742–749.10.1016/j.jbiomech.2004.12.026
  • Soulis JV, Giannoglou GD, Chatzizisis YS, Parcharidis GE, Louridas GE. 2007. Flow parameters in normal left coronary artery tree. Implication to atherogenesis. Comput Biol Med. 37:628–636.10.1016/j.compbiomed.2006.06.006
  • Soulis JV, Giannoglou GD, Chatzizisis YS, Seralidou KV, Parcharidis GE, Louridas GE. 2008. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Med Eng Phys. 30:9–19.
  • Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE. 2008. Low-density lipoprotein concentration in the normal left coronary artery tree. Bio Med Eng. ( Online). 7:1–16.
  • Sousa LC, Castro CF, António CC, Santos A, Santos R, Castro P, Azevedo E, Tavares JMRS. 2014. Haemodynamic conditions of patient-specific carotid bifurcation based on ultrasound imaging. Comput Methods Biomech Biomed Eng: Imaging Visual. 2:157–166.
  • Timmins LH, Mackie BD, Oshinski JN, Giddens DP, Samady H. 2013. Colocalization of low and oscillatory coronary wall shear stress with subsequent culprit lesion resulting in myocardial infraction in an orthotopic heart transplant patient. Cardiovasc Interv. 6:1210–1211.10.1016/j.jcin.2013.03.024
  • Timmins LH, Molony DS, Eshtehardi P, McDaniel MC, Oshinski JN, Samady H, Giddens DP. 2014. Focal association between wall shear stress and clinical coronary artery disease progression. Ann Biomed Eng. 43:94–106.
  • Van Canneyt K, Morbiducci U, Eloot S, De Santis G, Segers P, Verdonck P. 2013. A computational exploration of helical arterio-venous graft designs. J Biomech. 46:345–353.10.1016/j.jbiomech.2012.10.027
  • Yilmaz F, Gundogdu MY. 2008. A critical review on blood flow in large arteries: relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Aust Rheol J. 20:197–197.
  • Zhang J-M, Luo T, Tan SY, Lomarda AM, Wong ASL, Keng FYJ, Allen JC, Huo Y, Su B, Zhao X, et al. 2015. Hemodynamic analysis of patient-specific coronary artery tree. Num Meth Biomed Eng. 31:1–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.