528
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Subject-specific geometrical detail rather than cost function formulation affects hip loading calculationFootnote*

, , , , , & show all
Pages 1475-1488 | Received 17 Apr 2015, Accepted 11 Feb 2016, Published online: 01 Mar 2016

References

  • Ackland DC, Lin Y-C, Pandy MG. 2012. Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a Monte-Carlo analysis. J Biomech. 45:1463–1471.10.1016/j.jbiomech.2012.02.023
  • Anderson FC, Pandy MG. 2001a. Static and dynamic optimization solutions for gait are practically equivalent. J Biomech. 34:153–161.10.1016/S0021-9290(00)00155-X
  • Anderson FC, Pandy MG. 2001b. Dynamic optimization of human walking. J Biomech Eng. 123:381–390.10.1115/1.1392310
  • Arnold AS, Salinas S, Asakawa DJ, Delp SL. 2000. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg. 5:108–119.10.3109/10929080009148877
  • Bartels W, Vander Sloten J, Jonkers I. 2012. Sensitivity analysis of hip joint centre estimation based on three-dimensional CT scans. Comput Methods Biomech Biomed Eng. 15:539–546.10.1080/10255842.2010.548323
  • Bartels W, Demol J, Gelaude F, Jonkers I, Vander Sloten J. 2015. Computed tomography-based joint locations affect calculation of joint moments during gait when compared to scaling approaches. Comput Methods Biomech Biomed Eng. 18:1238–1251.10.1080/10255842.2014.890186
  • Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. 2001. Hip contact forces and gait patterns from routine activities. J Biomech. 34:859–871.10.1016/S0021-9290(01)00040-9
  • Besl PJ, McKay ND. 1992. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 14:239–256.10.1109/34.121791
  • Blemker SS, Delp SL. 2005. Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng. 33:661–673.10.1007/s10439-005-1433-7
  • Bosmans L, Wesseling M, Desloovere K, Molenaers G, Scheys L, Jonkers I. 2014. Hip contact force in presence of aberrant bone geometry during normal and pathological gait. J Orthop Res. 32:1406–1415.10.1002/jor.v32.11
  • Bosmans L, Valente G, Wesseling M, Van Campen A, De Groote F, De Schutter J, Jonkers I. 2015. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. J Biomech. 48:2116–2123.10.1016/j.jbiomech.2015.02.052
  • Brand RA, Pedersen DR, Friederich JA. 1986. The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech. 19:589–596.10.1016/0021-9290(86)90164-8
  • van Campen A, Pipeleers G, De Groote F, Jonkers I. 2014. A new method for estimating subject-specific muscle – tendon parameters of the knee joint actuators: a simulation study. Int J Numer Method Biomed Eng. 30:969–987.10.1002/cnm.v30.10
  • Correa TA, Crossley KM, Kim HJ, Pandy MG. 2010. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech. 43:1618–1622.10.1016/j.jbiomech.2010.02.008
  • Damm P, Bender A, Bergmann G. 2015. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking. PLoS One. 10:e0120438.10.1371/journal.pone.0120438
  • Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. 2006. Analysis of musculoskeletal systems in the anybody modeling system. Simul Model Pract Theor. 14:1100–1111.10.1016/j.simpat.2006.09.001
  • De Groote F, Pipeleers G, Jonkers I, Demeulenaere B, Patten C, Swevers J, De Schutter J. 2009. A physiology based inverse dynamic analysis of human gait: potential and perspectives. Comput Methods Biomech Biomed Eng. 12:563–574.10.1080/10255840902788587
  • De Groote F, Van Campen A, Jonkers I, De Schutter J. 2010. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J Biomech. 43:1876–1883.10.1016/j.jbiomech.2010.03.022
  • Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. 1990. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 37:757–767.10.1109/10.102791
  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. 2007. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 54:1940–1950.10.1109/TBME.2007.901024
  • Demers MS, Pal S, Delp SL. 2014. Changes in tibiofemoral forces due to variations in muscle activity during walking. J Orthop Res. 32:769–776.10.1002/jor.22601
  • Duda G, Brand D, Freitag S. 1996. Variability of femoral muscle attachments. J Biomech. 29:1185–1190.10.1016/0021-9290(96)00025-5
  • Felson DT. 2004. Obesity and vocational and avocational overload of the joint as risk factors for osteoarthritis. J Rheumatol. 31:2–5.
  • Fraysse F, Dumas R, Cheze L, Wang X. 2009. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. J Biomech. 42:2357–2362.10.1016/j.jbiomech.2009.06.056
  • Gelaude F, Lauwers B, Vander Sloten J. 2008. Accuracy assessment of CT-based outer surface femur meshes. Comput Aided Surg. 13:188–199.10.3109/10929080802195783
  • Hainisch R, Gfoehler M, Zubayer-Ul-Karim M, Pandy MG. 2012. Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data. Multibody Syst Dyn. 28:143–156.10.1007/s11044-011-9289-0
  • Hausselle J, Assi A, El Helou A, Jolivet E, Pillet H, Dion E, Bonneau D, Skalli W. 2012. Subject-specific musculoskeletal model of the lower limb in a lying and standing position. Comput Methods Biomech Biomed Eng. 17:37–41.
  • Heller MO, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN. 2001. Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech. 34:883–893.10.1016/S0021-9290(01)00039-2
  • Heller MO, Bergmann G, Kassi J-P, Claes L, Haas NP, Duda GN. 2005. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech. 38:1155–1163.10.1016/j.jbiomech.2004.05.022
  • Klein Horsman MD. 2007. The twente lower extremity model: consistent dynamic simulation of the human locomotor apparatus PhD thesis. University of Twente, Netherlands.
  • Klein Horsman MD, Koopman HFJM, van der Helm FCT, Prosé LP, Veeger HEJ. 2007. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech. 22:239–247.10.1016/j.clinbiomech.2006.10.003
  • Lenaerts G, Bartels W, Gelaude F, Mulier M, Spaepen A, Van der Perre G, Jonkers I. 2009. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait. J Biomech. 42:1246–1251.10.1016/j.jbiomech.2009.03.037
  • Lenaerts G, Mulier M, Spaepen A, Van der Perre G, Jonkers I. 2009. Aberrant pelvis and hip kinematics impair hip loading before and after total hip replacement. Gait Posture. 30:296–302.10.1016/j.gaitpost.2009.05.016
  • Lu TW, O’Connor JJ. 1999. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech. 32:129–134.10.1016/S0021-9290(98)00158-4
  • Martelli S, Taddei F, Cappello A, van Sint Jan S, Leardini A, Viceconti M. 2011. Effect of sub-optimal neuromotor control on the hip joint load during level walking. J Biomech. 44:1716–1721.10.1016/j.jbiomech.2011.03.039
  • Martelli S, Valente G, Viceconti M, Taddei F. 2015. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location. Comput Methods Biomech Biomed Eng. 18:1–9.
  • Mellon SJ, Grammatopoulos G, Andersen MS, Pegg EC, Pandit HG, Murray DW, Gill HS. 2013. Individual motion patterns during gait and sit-to-stand contribute to edge-loading risk in metal-on-metal hip resurfacing. J Eng Med. 227:799–810.10.1177/0954411913483639
  • Modenese L, Phillips ATM, Bull AMJ. 2011. An open source lower limb model: hip joint validation. J Biomech. 44:2185–2193.10.1016/j.jbiomech.2011.06.019
  • Moissenet F, Chèze L, Dumas R. 2014. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J Biomech. 47:50–58.10.1016/j.jbiomech.2013.10.015
  • Pedersen D, Brand R, Cheng C, Arora J. 1987. Direct comparison of muscle force predictions using linear and nonlinear programming. J Biomech Eng. 109:192–199.10.1115/1.3138669
  • Pellikaan P, van der Krogt MM, Carbone V, Fluit R, Vigneron LM, Van Deun J, Verdonschot N, Koopman HFJM. 2014. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity. J Biomech. 47:1144–1150.10.1016/j.jbiomech.2013.12.010
  • Praagman M, Chadwick EKJ, van der Helm FCT, Veeger HEJ. 2006. The relationship between two different mechanical cost functions and muscle oxygen consumption. J Biomech. 39:758–765.10.1016/j.jbiomech.2004.11.034
  • Scheys L, Jonkers I, Loeckx D, Maes F. 2006. Image based musculoskeletal modeling allows personalized biomechanical analysis of gait. Lect Notes Comput Sci 4072:58–66.10.1007/11790273
  • Scheys L, Van Campenhout A, Spaepen A, Suetens P, Jonkers I. 2008. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths. Gait Posture. 28:358–365.10.1016/j.gaitpost.2008.05.002
  • Scheys L, Spaepen A, Suetens P, Jonkers I. 2008. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture. 28:640–648.10.1016/j.gaitpost.2008.04.010
  • Söderkvist I, Wedin P. 1993. Determining the movements of the skeleton using well-configured markers. J Biomech. 26:1473–1477.10.1016/0021-9290(93)90098-Y
  • Stansfield BW, Nicol AC, Paul JP, Kelly IG, Graichen F, Bergmann G. 2003. Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech. 36:929–936.10.1016/S0021-9290(03)00072-1
  • Steele KM, Demers MS, Schwartz MH, Delp SL. 2012. Compressive tibiofemoral force during crouch gait. Gait Posture. 35:556–560.10.1016/j.gaitpost.2011.11.023
  • Steele KM, van der Krogt MM, Schwartz MH, Delp SL. 2012. How much muscle strength is required to walk in a crouch gait? J Biomech. 45:2564–2569.10.1016/j.jbiomech.2012.07.028
  • Thelen DG. 2003. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng. 125:70–77.10.1115/1.1531112
  • Thelen DG, Anderson FC, Delp SL. 2003. Generating dynamic simulations of movement using computed muscle control. J Biomech. 36:321–328.10.1016/S0021-9290(02)00432-3
  • Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F. 2014. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One. 9:e112625.10.1371/journal.pone.0112625
  • Wesseling M, Derikx LC, de Groote F, Bartels W, Meyer C, Verdonschot N, Jonkers I. 2015. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces. J Orthop Res. 33:430–438.10.1002/jor.v33.3
  • Winby CR, Lloyd DG, Kirk TB. 2008. Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J Biomech. 41:1682–1688.10.1016/j.jbiomech.2008.03.008
  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, et al. 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. J Biomech. 35:543–548.10.1016/S0021-9290(01)00222-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.