332
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine

&
Pages 1505-1518 | Received 09 May 2015, Accepted 25 Feb 2016, Published online: 23 Mar 2016

References

  • Ayturk UM, Puttlitz CM. 2011. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Eng. 14(8):695–705.10.1080/10255842.2010.493517
  • Bogduk N. 1983. The innervation of the lumbar spine. Spine. 8:286.10.1097/00007632-198304000-00009
  • Bogduk N. 2012. Clinical and radiological anatomy of the lumbar spine. 5th ed. London: Elsevier Health Sciences.
  • Bowden AE, Guerin HL, Villarraga ML, Patwardhan AG, Ochoa JA. 2008. Quality of motion considerations in numerical analysis of motion restoring implants of the spine. Clin Biomech. 23:536–544.10.1016/j.clinbiomech.2007.12.010
  • Bradshaw RJ. 2011. Mechanical characterization of the human interspinous ligament using anisotropic small punch testing. Provo (UT): Brigham Young University; p. 72.
  • Bradshaw RJ, Russell Alison C, Bowden Anton E. 2011. Spinal ligaments: anisotropic characterization using very small samples. Exp Appl Mech. 6:429–436.
  • Brinckmann P, Frobin W, Hierholzer E, Horst M. 1983. Deformation of the vertebral end-plate under axial loading of the spine. Spine. 8:851–856.10.1097/00007632-198311000-00007
  • Charriere E, Sirey F, Zysset PK. 2003. A finite element model of the L5-S1 functional spinal unit: development and comparison with biomechanical tests in vitro. Comput Methods Biomech Biomed Eng. 6:249–261.10.1080/10255840310001606099
  • Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, Vanneuville G. 1985. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 18:167–176.10.1016/0021-9290(85)90202-7
  • Chen SH, Tai CL, Lin CY, Hsieh PH, Chen WP. 2008. Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques – a three-dimensional finite element analysis. BMC Musculoskelet Disord. 9:88–98.10.1186/1471-2474-9-88
  • Elliott DM, Setton LA. 2001. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J Biomech Eng. 123:256–263.10.1115/1.1374202
  • Goel VK, Clausen JD. 1998. Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine. 23:684–691.10.1097/00007632-199803150-00008
  • Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. 1995. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L–L4 motion segment subjected to axial compressive loads. Spine. 20:689–698.10.1097/00007632-199503150-00010
  • Hirsch C, Ingelmark BE, Miller M. 1963. The anatomical basis for low back pain: studies on the presence of sensory nerve endings in ligamentous, capsular and intervertebral disc structures in the human lumbar spine. Acta Orthopaed Scand. 33:1–17.10.3109/17453676308999829
  • Hortin M, Graham S, Boatwright K, Hyoung P, Bowden A. 2015. Transversely isotropic material characterization of the human anterior longitudinal ligament. J Mech Behav Biomed Mater. 45:75–82.10.1016/j.jmbbm.2015.01.020
  • Jebaseelan DD, Jebaraj C, Yoganandan N, Rajasekaran S. 2010. Validation efforts and flexibilities of an eight-year-old human juvenile lumbar spine using a three-dimensional finite element model. Med Biol Eng Comput. 48:1223–1231.10.1007/s11517-010-0691-1
  • Kallemeyn N, Gandhi A, Kode S, Shivanna K, Smucker J, Grosland N. 2010. Validation of a C2–C7 cervical spine finite element model using specimen-specific flexibility data. Med Eng Phys. 32:482–489.10.1016/j.medengphy.2010.03.001
  • Kiapour AM, Kaul V, Kiapour A, Quatman CE, Wordeman SC, Hewett TE, Demetropoulos CK, Goel VK. 2013. The effect of ligament modeling technique on knee joint kinematics: a finite element study. Appl Math. 4:91–97.10.4236/am.2013.45A011
  • Little JS, Khalsa PS. 2005. Material properties of the human lumbar facet joint capsule. J Biomech Eng. 127:15–24.10.1115/1.1835348
  • LSTC. 2015. LS-DYNA keyword user’s manual. Vol. 1. Livermore (CA): Livermore Software Technology Company.
  • Mesfar W, Shirazi-Adl A. 2006. Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction. Comput Methods Biomech Biomed Eng. 9:201–209.10.1080/10255840600795959
  • Mommersteeg TJ, Blankevoort L, Huiskes R, Kooloos JG, Kauer JM. 1996. Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach. J Biomech. 29:151–160.10.1016/0021-9290(95)00040-2
  • Morgan EF, Bayraktar HH, Keaveny TM. 2003. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 36:897–904.10.1016/S0021-9290(03)00071-X
  • Mow VC, Huiskes R. 2005. Basic orthopaedic biomechanics & mechano-biology. Philadelphia (PA): Lippincott Williams & Wilkins.
  • Noailly J, Lacroix D, Planell JA. 2005. Finite element study of a novel intervertebral disc substitute. Spine. 30:2257–2264.10.1097/01.brs.0000182319.81795.72
  • Noailly J, Wilke HJ, Planell JA, Lacroix D. 2007. How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J Biomech. 40:2414–2425.10.1016/j.jbiomech.2006.11.021
  • Polikeit A, Nolte LP, Ferguson SJ. 2003. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine. 28:991–996.
  • Robertson DJ, Von Forell GA, Alsup J, Bowden AE. 2013b. Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain. J Mech Behav Biomed Mater. 23:44–52.10.1016/j.jmbbm.2013.04.004
  • Robertson D, Willardson R, Parajuli D, Cannon A, Bowden AE. 2013. The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect. J Mech Behav Biomed Mater. 17:34–43.10.1016/j.jmbbm.2012.07.009
  • Shirazi-Adl A, Moglo KE. 2005. Effect of changes in cruciate ligaments pretensions on knee joint laxity and ligament forces. Comput Methods Biomech Biomed Eng. 8:17–24.10.1080/10255840500062922
  • Ulrich D, van Rietbergen B, Laib A, Ruegsegger P. 1999. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 25:55–60.10.1016/S8756-3282(99)00098-8
  • Von Forell GA, Bowden AE. 2014. Biomechanical implications of lumbar spinal ligament transection. Comput Methods Biomech Biomed Eng. 17:1685–1695.
  • Weiss JA, Gardiner JC. 2001. Computational modeling of ligament mechanics. Crit Rev Biomed Eng. 29:303–371.10.1615/CritRevBiomedEng.v29.i3
  • Weiss JA, Maker BN, Govindjee S. 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng. 135:107–128.10.1016/0045-7825(96)01035-3
  • Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. 2005. Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys. 27:845–861.10.1016/j.medengphy.2005.05.006
  • White AA, Panjabi MM. 1990. Clinical biomechanics of the spine. 2nd ed. Philadelphia (PA): Lippincott Williams and Wilkins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.