320
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

The influence of artery wall curvature on the anatomical assessment of stenosis severity derived from fractional flow reserve: a computational fluid dynamics study

, , , , &
Pages 1541-1549 | Received 29 Jan 2015, Accepted 21 Mar 2016, Published online: 07 Apr 2016

References

  • Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 2007. 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J. 28:3042–3050.10.1093/eurheartj/ehm466
  • Ashtekar KD, Back LH, Khoury SF, Banerjee RK. 2007. In vitro quantification of guidewire flow-obstruction effect in model coronary stenoses for interventional diagnostic procedure. J Med Device. 1:185–196.10.1115/1.2776336
  • Banerjee RK, Back LH, Back MR, Cho YI. 2000. Physiological flow simulation in residual human stenoses after coronary angioplasty. J Biomech Eng. 122:310–320.10.1115/1.1287157
  • Banerjee RK, Back LH, Back MR, Cho YI. 2003. Physiological flow analysis in significant human coronary artery stenoses. Biorheology. 40:451–476.
  • Banerjee RK, Sinha Roy A, Back LH, Back MR, Khoury SF, Millard RW. 2007. Characterizing momentum change and viscous loss of a hemodynamic endpoint in assessment of coronary lesions. J Biomech. 40:652–662.10.1016/j.jbiomech.2006.01.014
  • Banerjee RK, Ashtekar KD, Helmy TA, Effat MA, Back LH, Khoury SF. 2008. Hemodynamic diagnostics of epicardial coronary stenoses: in vitro experimental and computational study. Biomed Eng Online. 7(1):1–22.10.1186/1475-925X-7-24
  • Banerjee RK, Ashtekar KD, Effat MA, Helmy TA, Kim E, Schneeberger EW, Sinha RA, Gottliebson WM, Back LH. 2009. Concurrent assessment of epicardial coronary artery stenosis and microvascular dysfunction using diagnostic endpoints derived from fundamental fluid dynamics principles. J Invasive Cardiol. 21:511–517.
  • Brosh D, Higano ST, Lennon RJ, Holmes DR Jr, Lerman A. 2005. Effect of lesion length on fractional flow reserve in intermediate coronary lesions. Am Heart J. 150:338–343.10.1016/j.ahj.2004.09.007
  • Cho YI, Kensey KR. 1991. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology. 28:241–262.
  • Cho YI, Back LH, Crawford DW, Cuffel RF. 1983. Experimental study of pulsatile and steady flow through a smooth tube and an atherosclerotic coronary artery casting of man. J Biomech. 16:933–946.10.1016/0021-9290(83)90057-X
  • Dash RK, Jayaraman G, Mehta KN. 1999. Flow in a catheterized curved artery with stenosis. J Biomech. 32:49–61.10.1016/S0021-9290(98)00142-0
  • Goldsmith HL, Karino T. 1995. Flow patterns and the localization of vascular disease in the circulation. In: Holtzman R NN, Stein BM, Winston H, editors. Endovascular interventional neuroradiology. New York, NY: Springer; p. 25–66.10.1007/978-1-4612-2464-8
  • Govindaraju K, Kamangar S, Badruddin IA, Viswanathan GN, Badarudin A, Salman Ahmed NJ. 2014. Effect of porous media of the stenosed artery wall to the coronary physiological diagnostic parameter: a computational fluid dynamic analysis. Atherosclerosis. 233:630–635.10.1016/j.atherosclerosis.2014.01.043
  • Gross MF, Friedman MH. 1998. Dynamics of coronary artery curvature obtained from biplane cineangiograms. J Biomech. 31:479–484.10.1016/S0021-9290(98)00012-8
  • Huang RF, Yang T-F, Lan Y-K. 2010. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches. Exp Fluids. 48:497–508.10.1007/s00348-009-0754-y
  • Jozwik K, Obidowski D. 2010. Numerical simulations of the blood flow through vertebral arteries. J Biomech. 43:177–185.10.1016/j.jbiomech.2009.09.026
  • Kagadis GC, Skouras ED, Bourantas GC, Paraskeva CA, Katsanos K, Karnabatidis D, Nikiforidis GC. 2008. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling. Med Eng Phys. 30:647–660.10.1016/j.medengphy.2007.07.005
  • Karino T. 1986. Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases. Int Angiol. 5:297–313.
  • Konala BC, Das A, Banerjee RK. 2011. Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters. J Biomech. 44:842–847.10.1016/j.jbiomech.2010.12.011
  • Kristensen TS, Engstrøm T, Kelbæk H, von der Recke P, Nielsen MB, Kofoed KF. 2010. Correlation between coronary computed tomographic angiography and fractional flow reserve. Int J Cardiol. 144:200–205.10.1016/j.ijcard.2009.04.024
  • Liu B. 2007. The influences of stenosis on the downstream flow pattern in curved arteries. Med Eng Phys. 29:868–876.10.1016/j.medengphy.2006.09.009
  • MacCarthy P, Berger A, Manoharan G, Bartunek J, Barbato E, Wijns W, Heyndrickx GR, Pijls NHJ, De Bruyne B. 2005. Pressure-derived measurement of coronary flow reserve. J Am Coll Cardiol. 45:216–220.10.1016/j.jacc.2004.09.063
  • Mallinger F, Drikakis D. 2002. Instability in three-dimensional, unsteady, stenotic flows. Int J Heat Fluid Flow. 23:657–663.10.1016/S0142-727X(02)00161-3
  • Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, Boersma E, Regar E, van Geuns RJ, de Jaegere PJ, et al. 2008. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 52:636–643.10.1016/j.jacc.2008.05.024
  • Melikian N, De Bondt P, Tonino P, De Winter O, Wyffels E, Bartunek J, Heyndrickx GR, Fearon WF, Pijls NHJ, Wijns W, et al. 2010. Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv. 3:307–314.10.1016/j.jcin.2009.12.010
  • Nosovitsky VA, Ilegbusi OJ, Jiang J, Stone PH, Feldman CL. 1997. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow. Comput Biomed Res. 30:61–82.10.1006/cbmr.1997.1434
  • Park S-J, Ahn J-M, Kang S-J, Yoon S-H, Koo B-K, Lee J-Y, Kim W-J, Park D-W, Lee S-W, Kim Y-H, et al. 2014. Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv. 7:868–874.10.1016/j.jcin.2014.02.015
  • Pijls NHJ, Sels J-WEM. 2012. Functional measurement of coronary stenosis. J Am Coll Cardiol. 59:1045–1057.10.1016/j.jacc.2011.09.077
  • Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, El Gamal MI. 1995. Fractional flow reserve : a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 92:3183–3193.10.1161/01.CIR.92.11.3183
  • Pijls NH, de Bruyne B, Peels K, van der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ. 1996. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 334:1703–1708.10.1056/NEJM199606273342604
  • Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, van’t Veer, M., Klauss, V., Manoharan, G., Engstrøm, T., et al. 2010. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease. J Am Coll Cardiol. 56:177–184.10.1016/j.jacc.2010.04.012
  • Prosi M, Perktold K, Ding Z, Friedman MH. 2004. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model. J Biomech. 37:1767–1775.10.1016/j.jbiomech.2004.01.021
  • Rajabi-Jaghargh E, Kolli KK, Back LH, Banerjee RK. 2011. Effect of guidewire on contribution of loss due to momentum change and viscous loss to the translesional pressure drop across coronary artery stenosis: an analytical approach. Biomed Eng Online. 10:51.10.1186/1475-925X-10-51
  • Roy AS, Banerjee RK, Back LH, Back MR, Khoury S, Millard RW. 2005. Delineating the guide-wire flow obstruction effect in assessment of fractional flow reserve and coronary flow reserve measurements. Am J Physiol Heart Circ Physiol. 289:H392–H397.10.1152/ajpheart.00798.2004
  • Schilt S, Moore JE Jr, Delfino A, Meister J-J. 1996. The effects of time-varying curvature on velocity profiles in a model of the coronary arteries. J Biomech. 29:469–474.10.1016/0021-9290(95)00082-8
  • Sinha Roy A, Back LH, Banerjee RK. 2006. Guidewire flow obstruction effect on pressure drop-flow relationship in moderate coronary artery stenosis. J Biomech. 39:853–864.10.1016/j.jbiomech.2005.01.020
  • Siouffi M, Deplano V, Pélissier R. 1997. Experimental analysis of unsteady flows through a stenosis. J Biomech. 31:11–19.10.1016/S0021-9290(97)00104-8
  • Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H. 1999. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation. 100:250–255.10.1161/01.CIR.100.3.250
  • Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN. 2009. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng. 131(6):061010-1–061010-11.10.1115/1.3127253
  • Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van `t Veer, M., Klauss, V., Manoharan, G., Engstrøm, T., Oldroyd, K. G., et al. 2009. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 360:213–224.10.1056/NEJMoa0807611
  • Wang X, Li X. 2011. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid–structure interaction method. Comput Biol Med. 41:1014–1021.10.1016/j.compbiomed.2011.08.010
  • Wijpkema J, Dorgelo J, Willems T, Tio R, Jessurun G, Oudkerk M, Zijlstra F. 2007. Discordance between anatomical and functional coronary stenosis severity. Neth Heart J. 15:5.
  • Wilson RF, Marcus ML, White CW. 1987. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation. 75:723–732.10.1161/01.CIR.75.4.723
  • Wilson RF, Johnson MR, Marcus ML, Aylward PE, Skorton DJ, Collins S, White CW. 1988. The effect of coronary angioplasty on coronary flow reserve. Circulation. 77:873–885.10.1161/01.CIR.77.4.873
  • Yang C, Tang D, Kobayashi S, Zheng J, Woodard PK, Teng Z, Bach R, Ku DN. 2008. Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk. In vitro experimental modeling and ex vivo MRI-based computational modeling approach. Mol Cell Biomech. 5:259–274.
  • Yao H, Ang KC, Yeo JH, Sim EK. 2000. Computational modelling of blood flow through curved stenosed arteries. J Med Eng Technol. 24:163–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.