271
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Integration of multi-objective structural optimization into cementless hip prosthesis design: Improved Austin-Moore model

Pages 1557-1566 | Received 16 Feb 2015, Accepted 21 Mar 2016, Published online: 30 Mar 2016

References

  • Bae JY, Farooque U, Lee KW, Kim GH, Jeon I, Yoon TR. 2011. Development of hip joint prostheses with modular stems. Comput Aided Des. 43:1173–1180.10.1016/j.cad.2011.05.004
  • Beaupré GS, Orr TE, Carter DR. 1990. An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J Orthopaedic Res. 8:662–670.10.1002/jor.v8:5
  • Boyle C, Kim IY. 2011. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization. J Biomech. 44:1722–1728.10.1016/j.jbiomech.2011.03.038
  • Chang PB, Williams BJ, Bhalla KSB, Belknap TW, Santner TJ, Notz WI, Bartel DL. 2001. Design and analysis of robust total joint replacements: finite element model experiments with environmental variables. J Biomech Eng. 123:239–246.
  • El-Sheikh HF, MacDonald BJ, Hashmi MSJ. 2003. Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. J Mater Process Technol. 143–144:249–255.10.1016/S0924-0136(03)00352-2
  • Fernandes PR, Folgado J, Ruben RB. 2004. Shape optimization of a cementless hip stem for a minimum of interface stress and displacement. Comput Methods Biomech Biomed Eng. 7:51–61.10.1080/10255840410001661637
  • Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC. 2010. Topological optimization in hip prosthesis design. Biomech Model Mechanobiol. 9:389–402.10.1007/s10237-009-0183-0
  • Gonzalez CD. 2009. Probabilistic finite element analysis of un-cemented total hip replacement [PhD thesis]. School of Engineering Sciences, Bioengineering Sciences Research Group, University of Southampton, March 2009.
  • Gross S, Abel EW. 2001. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech. 34:995–1003.10.1016/S0021-9290(01)00072-0
  • Herrera A, Rebollo S, Ibarz E, Mateo J, Gabarre S, Gracia L. 2014. Mid-term study of bone remodeling after femoral cemented stem implantation: comparison between DXA and finite element simulation. J Arthroplasty. 29:90–100.10.1016/j.arth.2013.03.028
  • Huiskes R, Boeklagen R. 1989. Mathematical shape optimization of hip prosthesis design. J Biomech. 22:793–804.10.1016/0021-9290(89)90063-8
  • Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. 1987. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 20:1135–1150.10.1016/0021-9290(87)90030-3
  • Katouzian H, Davy DT. 1993. Three-dimensional shape optimization of femoral components of total hip prostheses. Bioeng Conference ASME. 24:552–555.
  • Katoozian H, Davy DT. 2000. Effects of loading conditions and objective function on three dimensional shape optimization of femoral components of hip endoprostheses. Medical Eng Physics. 22:243–251.10.1016/S1350-4533(00)00030-8
  • Kharmanda G. 2015. Reliability analysis for cementless hip prosthesis using a new optimized formulation of yield stress against elasticity modulus relationship. Mater Des. 65:496–504.10.1016/j.matdes.2014.09.040
  • Kharmanda G, El-Hami A, de Cursi S. 2010. Reliability-based design optimization. In: Breitkopt P, Filomeno Coelho R, editors. Multidisciplinary design optimization in computational mechanics. Chapter 11. Wiley, ISBN: 9781848211384, Hardback, 576 pp.
  • Kharmanda G, Mohamed A, Lemaire M. 2002. Efficient reliability-based design optimization using a hybrid space with application to finite element analysis. Struct Multidiscipl Optim. 24:233–245.10.1007/s00158-002-0233-z
  • Kharmanda G, Wallin, M, Ristinmaa M. 2014. Integration of multi-objective structural optimization into ANSYS software with application to artificially hip replacement joints. 2014 ANSYS Nordic Convergence Conference; May 20–21; Gothenburg, Sweden.
  • Long M, Rack HJ. 1998. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 19:1621–1639.10.1016/S0142-9612(97)00146-4
  • Mackerle J. 2006. Finite element modeling and simulations in orthopedics: a bibliography 1998–2005. J Comput Methods Biomech Biomed Eng. 9:149–199.10.1080/10255840600751523
  • Ruben RB, Folgado J, Fernandes PR. 2012. On the optimal shape of hip implants. J Biomech. 45:239–246.10.1016/j.jbiomech.2011.10.038
  • Senapati S-K, Pal S. 2005, January. UHMWPE-alumina ceramic composite: a proposed metal substitute for artificially replaced hip joint. IE (I) J MC. 85:157–162.
  • Shaik SA, Bose K, Cherukuri HP. 2012. A study of durability of hip implants. Mater Des. 42:230–237.
  • Tsubota K, Adachi T, Tomita Y. 2002. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J Biomech. 35:1541–1551.10.1016/S0021-9290(02)00173-2
  • Wolff, J. 1986. The law of bone remodelling ( translation of the German 1892 edition). Berlin: Springer.10.1007/978-3-642-71031-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.