1,041
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment

, &
Pages 1647-1664 | Received 22 Sep 2015, Accepted 05 Apr 2016, Published online: 04 May 2016

References

  • Cansız FBC, Dal H, Kaliske M. 2015. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng. 18:1160–1172.
  • Carreras F, Garcia-Barnes J, Gil D, Pujadas S, Li CH, Suarez-Arias R, Leta R, Alomar X, Ballester M, Pons-Llado G. 2011. Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects. Int J Cardiovasc Imaging. 16:1–12.
  • Coleman BD, Gurtin ME. 1967. Thermodynamics with internal state variables. J Chem Phys. 47:597–613.
  • Coppola BA, Omens JH. 2008. Role of tissue structure on ventricular wall mechanics. Mech Chem Biosyst. 5:183–196.
  • Costa KD, Holmes JW, McCulloch AD. 2001. Modeling cardiac mechanical properties in three dimensions. Philos Trans Roy Soc A. 359:1233–1250.
  • Costa KD, Hunter PJ, Wayne JS, Waldman LK, Guccione JM, McCulloch AD. 1996. A three-dimensional finite element method for large elastic deformations of ventricular mycardium: II-Prolate spheroidal coordinates. J Biomech Eng. 118:464–472.
  • Covell JW. 2008. Tissue structure and ventricular wall mechanics. Circulation. 118:699–701.
  • Demiray H. 1972. A note on the elasticity of soft biological tissues. J Biomech. 5:309–311.
  • Dokos S, Smaill BH, Young AA, LeGrice IJ. 2002. Shear properties of passive ventricular myocardium. Am J Physiol. 283:H2650–H2659.
  • Eriksson TSE, Prassl AJ, Plank G, Holzapfel GA. 2013a. Modeling the dispersion in electro-mechanically coupled myocardium. Int J Numer Method Biomed Eng. 29:1267–1284.
  • Eriksson TSE, Prassl AJ, Plank G, Holzapfel GA. 2013b. Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math Mech Solids. 18:592–606.
  • 2008. FEAP -- a finite element analysis program, version 8.2 user manual. Berkeley: University of California at Berkeley.
  • Flory PJ. 1961. Thermodynamic relations for highly elastic materials. Trans Faraday Soc. 57:829–838.
  • Fomovsky G, Thomopoulos S, Holmes JW. 2010. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol. 48:490–496.
  • Fung YC. 1993. Biomechanics. Mechanical properties of living tissues. 2nd ed. New York: Springer-Verlag.
  • Göktepe S, Acharya SNS, Wong J, Kuhl E. 2011. Computational modeling of passive myocardium. Commun Numer Methods Eng. 27:1–14.
  • Guccione JM, McCulloch AD, Waldman LK. 1991. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng. 113:42–55.
  • Holzapfel GA. 1996. On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng. 39:3903–3926.
  • Holzapfel GA. 2000. Nonlinear solid mechanics. A continuum approach for engineering. Chichester: Wiley.
  • Holzapfel GA. 2003. Structural and numerical models for the (visco)elastic response of arterial walls with residual stresses. In: Holzapfel GA, Ogden RW, editors. Biomechanics of soft tissue in cardiovasc systems. Wien: Springer-Verlag; p. 109–184. CISM courses and lectures no. 441.
  • Holzapfel GA, Gasser TC. 2001. A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng. 190:4379–4403.
  • Holzapfel GA, Gasser TC, Stadler M. 2002. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A/Solids. 21:441–463.
  • Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Roy Soc A. 367:3445–3475.
  • Hughes TJR, Winget J. 1980. Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int J Numer Methods Eng. 15:1413–1418.
  • Humphrey JD. 2002. Cardiovascular solid mechanics. Cells, tissues, and organs. New York: Springer-Verlag.
  • Humphrey JD, Strumpf RK, Yin FCP. 1990. Determination of constitutive relation for passive myocardium: I. A new functional form. J Biomech Eng. 112:333–339.
  • Huyghe JM, van Campen DH, Arts T, Heethaar RM. 1991. The constitutive behaviour of passive heart muscle tissue. A quasi-linear viscoelastic formulation. J Biomech. 24:841–849.
  • Huyghe JM, Arts T, van Campen DH, Reneman RS. 1992. Porous medium finite element model of the beating left ventricle. Am J Physiol Heart Circ Physiol. 262:H1256–H1267.
  • Karlon WJ, Covell JW, McCulloch AD, Hunter JJ, Omens JH. 1998. Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras. Anat Rec. 252:612–625.
  • Karlon WJ, McCulloch AD, Covell JW, Hunter JJ, Omens JH. 2000. Regional dysfunction correlates with myofiber disarray in transgenic mice with ventricular expression of ras. Am J Physiol Heart Circ Physiol. 278:H898–H906.
  • LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. 1995. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol. 269:H571–H582.
  • Löffler L, Sagawa K. 1975. A one-dimensional viscoelastic model of cat heart muscle studied by small length perturbations during isometric contraction. Circ Res. 36:498–512.
  • Lubliner J. 1985. A model of rubber viscoelasticity. Mech Res Commun. 12:93–99.
  • MATLAB. R2010a. The Math Works Inc., Natick, MA, USA.
  • Miehe C. 1994. Aspects of the formulation and finite element implementation of large strain isotropic elasticity. Int J Numer Methods Eng. 37:1981–2004.
  • Moré JJ, Sorensen DC. 1983. Computing a trust region step. SIAM J Sci Stat Comput. 4:553–572.
  • Nielsen PMF, LeGrice IJ, Smaill BH, Hunter PJ. 1991. Mathematical model of geometry and fibrous structure of the heart. Am J Physiol Cell Physiol. 260:H1365–H1378.
  • Ogden RW. 2009. Anisotropy and nonlinear elasticity in arterial wall mechanics. In: Holzapfel GA, Ogden RW, editors. Biomechanical modelling at the molecular, cellular and tissue levels. Wien: Springer-Verlag; p. 179–258. CISM Courses and Lectures no. 508.
  • Reese S, Govindjee S. 1998a. A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct. 35:3455–3482.
  • Rohmer D, Sitek A, Gullberg GT. 2007. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol. 42:777–789.
  • Rüssel IK, Götte MJ, Bronzwaer JG, Knaapen P, Paulus WJ, van Rossum AC. 2009. Left ventricular torsion: an expanding role in the analysis of myocardial dysfunction. JACC Cardiovasc Imaging. 2:648–655.
  • Sands GB, Gerneke DA, Hooks DA, Green CR, Smaill BH, LeGrice IJ. 2005. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67:227–239.
  • Sands GB, Smaill BH, LeGrice IJ. 2008. Virtual sectioning of cardiac tissue relative to fiber orientation. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS 2008. Vancouver, British Columbia, Canada; p. 226–229.
  • Schmid H, Nash MP, Young AA, Hunter PJ. 2006. Myocardial material parameter estimation -- a comparative study for simple shear. J Biomech Eng. 128:742–750.
  • Schröder J, Neff P, Balzani D. 2005. A variational approach for materially stable anisotropic hyperelasticity. Int J Solids Struct. 42: 4352–4371.
  • Simo JC. 1987. On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Meth Appl Mech Eng. 60:153–173.
  • Simo JC, Taylor RL. 1991. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Meth Appl Mech Eng. 85:273–310.
  • Simo JC, Taylor RL, Pister KS. 1985. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng. 51:177–208.
  • Sommer G, Schriefl AJ, Andrä M, Sacherer M, Viertler Ch, Wolinski, Holzapfel GA. 2015. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24:172–192.
  • Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH. 1969. Fibre orientation in the canine left ventricle during diastole and systole. Circ Res. 24:339–347.
  • Strijkers GJ, Bouts A, Blankesteijn WM, Peeters THJM, Vilanova A, van Prooijen MC, Sanders HMHF, Heijman E, Nicolay K. 2009. Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse. NMR Biomed. 22:182–190.
  • The World Health Organization. 2014. Global status report on noncommunicable diseases. Available from: http://www.who.int/nmh/publications/ncd-status-report-2014/en/
  • Tsaturyan AK, Izacov VJ, Zhelamsky SV, Bykov BL. 1984. Extracellular fluid filtration as the reason for the viscoelastic behavior of the passive myocardium. J Biomech. 17:749–755.
  • Usyk TP, Omens JH, McCulloch AD. 2001. Regional septal dysfunction in a three-dimensional computational model of focal myofiber disarray. Am J Physiol Heart Circ Physiol. 281:H506–H514.
  • Wriggers P. 2008. Nonlinear finite element methods. Berlin Heidelberg: Springer-Verlag.
  • Yao J, Varner VD, Brilli LL, Young JM, Taber LA, Perucchio R. 2012. Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart. J Biomech Eng. 134:1–7.
  • Zienkiewicz OC, Taylor RL. 2000a. The finite element method. The basis, volume 1, 5th ed. Oxford: Butterworth Heinemann.
  • Zienkiewicz OC, Taylor RL. 2000b. The finite element method. Solid mechanics, volume 25th ed. Oxford: Butterworth Heinemann

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.