395
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Changes to the geometry and fluid mechanics of the carotid siphon in the pediatric Moyamoya disease

, , , , , , & show all
Pages 1760-1771 | Received 06 Jan 2016, Accepted 27 Apr 2016, Published online: 11 May 2016

References

  • Belyaev A. 2004. Plane and space curves. Curvature. Curvature-based features. Saarbrücken: Max-Planck-Institut für Informatik.
  • Berger S, Jou L. 2000. Flows in stenotic vessels. Ann Rev Fluid Mech. 32:347–382.10.1146/annurev.fluid.32.1.347
  • Bouthillier A, van Loveren HR, Keller, JT. 1996. Segments of the internal carotid artery: a new classification. Neurosurgery. 38:425–433.
  • Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL. 1996. Non-planar curvature and branching of arteries and non-planar-type flow. Proc R Soc A. 452:185–197.10.1098/rspa.1996.0011
  • Fischer E. 1938. Die Lageabweichungen der vorderen hirnarterie im gefässbild  [The positional deviations of the anterior cerebral artery in thevascular image]. Zentralbl Neurochir. 3:300–313.
  • Gammack D, Hydon PE. 2001. Flow in pipes with non-uniform curvature and torsion. J Fluid Mech. 433:357–382.10.1017/S0022112001003548
  • Ganesan V. 2010. Moyamoya. J Pediatr Neurol. 8:93–95.
  • Gibo H, Lenkey C, Rhoton AL. 1981. Microsurgical anatomy of the supraclinoid portion of the internal carotid artery. J Neurosurg. 55:560–574.10.3171/jns.1981.55.4.0560
  • Groen HC, Simons L, van den Bouwhuijsen QJA, Bosboom EMH, Gijsen FJH, van der Giessen AG, van de Vosse FN, Hofman A, van der Steen AFW, Witteman JCM, van der Lugt A, Wentzel JJ. 2010. MRI-based quantification of outflow boundary conditions for computational fluid dynamics of stenosed human carotid arteries. J Biomech. 43:2332–2338.
  • Haussen DC, Gaynor BG, Johnson JN, Peterson EC, Elhammady MS, Aziz-Sultan MA, Yavagal DR. 2014. Carotid siphon calcification impact on revascularization and outcome in stroke intervention. Clin Neurol Neurosurg. 120:73–77.10.1016/j.clineuro.2014.02.021
  • Hoi Y, Wasserman BA, Xie YYJ, Najjar SS, Ferruci L, Lakatta EG, Gerstenblith G, Steinman DA. 2010. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas. 31:291–302.10.1088/0967-3334/31/3/002
  • Houkin K, Ito M, Sugiyama T, Shichinohe H, Nakayama N, Kazumata K, Kuroda S. 2012. Review of past research and current concepts on the etiology of Moyamoya disease. Neurologia medico-chirurgica. 52:267–277.10.2176/nmc.52.267
  • Huwez FU, Houston AB, Watson J, McLaughlin S, Macfarlane PW. 1994. Age and body surface area related normal upper and lower limits of M mode echocardiographic measurements and left ventricular volume and mass from infancy to early adulthood. Heart. 72:276–280.10.1136/hrt.72.3.276
  • Kang H-S, Moon Y-J, Kim Y-Y, Park W-Y, Park AK, Wang K-C, Kim JE, Phi JH, Lee JY, K S-K. 2014. Smooth-muscle progenitor cells isolated from patients with moyamoya disease: novel experimental cell model. J Neurosurg. 120:415–425.10.3171/2013.9.JNS131000
  • Keagy BA, Poole MA, Burnham SJ, Johnson Jr. G. 1986. Frequency, severity, and physiologic importance of carotid siphon lesions. J Vasc Surg. 3:511–515.10.1016/0741-5214(86)90118-7
  • Kerber CW, Hecht ST, Knox K, Buxton RB, Meltzer HS. 1996. Flow dynamics in a fatal aneurysm of the basilar artery. Am J Neuroradiol. 17:1417.
  • Kim M, Taulbee DB, Tremmel M, Meng H. 2008. Comparison of two stents in modifying cerebral aneurysm hemodynamics. Ann Biomed Eng. 36:726–741.10.1007/s10439-008-9449-4
  • Kim JH, Jung JH, Phi JH, Kang HS, Kim JE, Chae JH, Kim SJ, Kim YH, Kim YY, Cho BK. 2010. Decreased level and defective function of circulating endothelial progenitor cells in children with moyamoya disease. J Neurosci Res. 88:510–518.
  • Kim T, Bang J, Kwon OK, Hwang G, Kim J, Kang H-S, Cho W, Moon J, Oh C. 2015. Morphology and related hemodynamics of the internal carotid arteries of moyamoya patients. Acta Neurochir. 157:755–761.10.1007/s00701-015-2367-y
  • Kojo M, Yamada K, Izumi T. 1998. Normal developmental changes in carotid artery diameter measured by echo-tracking. Pediatr Neurol. 18:221–226.10.1016/S0887-8994(97)00195-1
  • Langille BL, O’Donnell F. 1986. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 231:405–407.10.1126/science.3941904
  • Lasjaunias P, Berenstein A. 1987. Arterial anatomy: introduction. In: Surgical neuroangiography: functional anatomy of craniofacial arteries. Berlin, Heidelberg: Springer-Verlag; p. 1–32.
  • Lauric A, Hippelheuser J, Safain MG, Malek AM. 2014. Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation. J Biomech. 47:3018–3027.10.1016/j.jbiomech.2014.06.042
  • Liu S, Masliyah JH. 1993. Axially invariant laminar flow in helical pipes with a finite pitch. J Fluid Mech. 251:315–353.10.1017/S002211209300343X
  • Malek AM, Alper SL, Izumo S. 1999. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282:2035–2042.10.1001/jama.282.21.2035
  • Meyer W, Walsh SZ, Lind J. 1980. Functional morphology of human arteries during fetal and postnatal development. In: Structure and function of the circulation. New York (NY):Springer; p. 95–379.
  • Müller HR, Brunhölzl C, Radü EW, Buser M. 1991. Sex and side differences of cerebral arterial caliber. Neuroradiology. 33:212–216.10.1007/BF00588220
  • Painter PR, Eden P, Bengtsson HU. 2006. Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theor Biol Med Model. 3:31.
  • Perktold K, Rappitsch G. 1995. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech. 28:845–856.10.1016/0021-9290(95)95273-8
  • Perktold K, Resch M, Florian H. 1991. Pulsatile non-Newtonian Flow characteristics in a three-dimensional human carotid bifurcation model. J Biomech Eng. 113:464–475.10.1115/1.2895428
  • Piccinelli M, Piccinelli M, Veneziani A, Veneziani A, Steinman DA, Remuzzi A, Antiga L. 2009. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans Med Imaging. 28:1141–1155.10.1109/TMI.2009.2021652
  • Rafat N, Beck GC, Pena-Tapia PG, Schmiedek P, Vajkoczy P. 2009. Increased levels of circulating endothelial progenitor cells in patients with Moyamoya disease. Stroke. 40:432–438.10.1161/STROKEAHA.108.529420
  • Shin D, Seol H, Kim S-K, Wang K-C, Cho B-K, Shim E. 2006. Computational analysis of the hemodynamics in cerebral arteries related to Moyamoya disease. In: Magjarevic, R., Nagel, J. H., editors. World congress on medical physics and biomedical engineering. Berlin Heidelberg: Springer; p. 155–158.
  • Starke RM, Crowley RW, Maltenfort M, Jabbour PM, Gonzalez LF, Tjoumakaris SI, Randazzo CG, Rosenwasser RH, Dumont AS. 2012. Moyamoya disorder in the United States. Neurosurgery. 71:93–99.10.1227/NEU.0b013e318253ab8e
  • Suzuki J. 1986. Moyamoya disease. New York (NY): Springer-Verlag.10.1007/978-3-642-95483-2
  • Takeuchi S, Karino T. 2010. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries. World Neurosurg. 73:174–185.10.1016/j.surneu.2009.03.030
  • Texon M. 1957. A hemodynamic concept of atherosclerosis, with particular reference to coronary occlusion. Arch Intern Med. 99:418–427.10.1001/archinte.1957.00260030100010
  • Texon M, Imparato AM, Lord Jr. JW. 1960. The hemodynamic concept of atherosclerosis: the experimental production of hemodynamic arterial disease. AMA Arch Surg. 80: 47–53.10.1001/archsurg.1960.01290180049006
  • The Vascular Modeling Toolkit. Available from: http://www.vmtk.org
  • Valen-Sendstad K, Piccinelli M, Steinman DA. 2014. High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J Biomech. 47: 3210–3216.
  • Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Chau AH, Kim LA, Kamm RD. 2004. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol. 3:17–32.10.1007/s10237-004-0046-7
  • Zhang C, Xie S, Li S, Pu F, Deng X, Fan Y, Li D. 2012. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses. J Biomech. 45:83–89.10.1016/j.jbiomech.2011.10.001
  • Zhang C, Pu F, Li S, Xie S, Fan Y, Li D. 2013. Geometric classification of the carotid siphon: association between geometry and stenoses. Surg Radiol Anat. 35:385–394.10.1007/s00276-012-1042-8
  • Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV, Ariff B, Long Q. 2000. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech. 33:975–984.10.1016/S0021-9290(00)00043-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.