593
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement

, , , , &
Pages 260-272 | Received 16 Mar 2016, Accepted 18 Jul 2016, Published online: 28 Jul 2016

References

  • Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V. 1988. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 12:56–62.10.1016/0735-1097(88)90356-7
  • Asakura T, Karino T. 1990. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 66:1045–1066.10.1161/01.RES.66.4.1045
  • Beltrame JF. 2012. Coronary artery disease – current concepts in epidemiology, pathophysiology, diagnostics and treatment. DD Gaze, editor. InTech. 10.5772/2448
  • Chaichana T, Sun Z, Jewkes J. 2014. Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches. Comput Methods Biomech Biomed Engin. 17:108–118.10.1080/10255842.2012.671308
  • Chan KH, Chawantanpipat C, Gattorna T, Chantadansuwan T, Kirby A, Madden A, Keech A, Ng MK. 2010. The relationship between coronary stenosis severity and compression type coronary artery movement in acute myocardial infarction. Am Heart J. 159:584–592.10.1016/j.ahj.2009.12.036
  • Einav S, Bluestein D. 2004. Dynamics of blood flow and platelet transport in pathological vessels. Ann N Y AcadSci. 1015:351–366.10.1196/annals.1302.031
  • Ferrari M, Werner GS, Bahrmann P, Richartz BM, Figulla HR. 2006. Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire. Cardiovasc Ultrasound. 4:14.10.1186/1476-7120-4-14
  • Friedman MH, Brinkman AM, Qin JJ, Seed WA. 1993. Relation between coronary artery geometry and the distribution of early sudanophilic lesions. Atherosclerosis. 98:193–199.10.1016/0021-9150(93)90128-H
  • Giannoglou GD, Soulis JV, Farmakis TM, Giannakoulas GA, Parcharidis GE, Louridas GE. 2005. Wall pressure gradient in normal left coronary artery tree. Med Eng Phys. 27:455–464.10.1016/j.medengphy.2004.12.015
  • Giroud D, Li JM, Urban P, Meier B, Rutishauser W. 1992. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol. 69:729–732.10.1016/0002-9149(92)90495-K
  • Glagov S, Zarins C, Giddens DP, Ku DN. 1988. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 112:1018–1031.
  • Hasan M, Rubenstein DA, Yin W. 2013. Effects of cyclic motion on coronary blood flow. J Biomech Eng. 135:121002.10.1115/1.4025335
  • Holzapfel GA, Ogden RW. 2006. Mechanics of biological tissue. Berlin: Springer.10.1007/3-540-31184-X
  • Javadzadegan A, Yong AS, Chang M, Ng AC, Yiannikas J, Ng MK, Behnia M, Kritharides L. 2013. Flow recirculation zone length and shear rate are differentially affected by stenosis severity in human coronary arteries. Am J Physiol Heart Circ Physiol. 304:H559–H566.10.1152/ajpheart.00428.2012
  • Konta T, Bett JH. 2003. Patterns of coronary artery movement and the development of coronary atherosclerosis. Circ J. 67:846–850.10.1253/circj.67.846
  • Koshiba N, Ando J, Chen X, Hisada T. 2007. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng. 129:374–385.
  • Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. 1988. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 78:1157–1166.10.1161/01.CIR.78.5.1157
  • Liu B, Zheng J, Bach R, Tang D. 2012. Correlations of coronary plaque wall thickness with wall pressure and wall pressure gradient: a representative case study. Biomed Eng Online. 11:43.10.1186/1475-925X-11-43
  • Lorenzini G, Casalena E. 2008. CFD analysis of pulsatile blood flow in an atherosclerotic human artery with eccentric plaques. J Biomech. 41:1862–1870.10.1016/j.jbiomech.2008.04.009
  • Malek AM, Alper SL, Izumo S. 1999. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282:2035–2042.10.1001/jama.282.21.2035
  • Manoharan G, Ntalianis A, Muller O, Hamilos M, Sarno G, Melikian N, Vanderheyden M, Heyndrickx GR, Wyffels E, Wijns W, De Bruyne B. 2009. Severity of coronary arterial stenoses responsible for acute coronary syndromes. Am J Cardiol. 103:1183–1188.10.1016/j.amjcard.2008.12.047
  • Menter FR. 2013. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA. 32:1598–1605.
  • Menter FR, Langtry R, Völker S. 2006. Transition modelling for general purpose CFD codes. Flow Turbul Combust. 77:277–303.10.1007/s10494-006-9047-1
  • Mongrain R, Cabau JR. 2006. Role of shear stress in atherosclerosis and restenosis after coronary stent implantation. Rev Esp Cardiol. 59:1–4.10.1157/13083641
  • Moore JE, Xu C, Glagov S, Zarins CK, Ku DN. 1999. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis. 110:225–240.
  • Morris L, Fahy P, Stefanov F, Finn R. 2015. The effects that cardiac motion has on coronary hemodynamics and catheter trackability forces for the treatment of coronary artery disease: an in vitro assessment. Cardiovasc Eng Technol. 6:430–449.10.1007/s13239-015-0241-y
  • Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP. 2009. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 15:665–673.10.1038/nm.1955
  • Pedersen EM, Oyre S, Agerbæk M, Kristensen IB, Ringgaard S, Boesiger P, Paaske WP. 1999. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stress measured in vivo. Eur J Vasc Endovasc Surg. 18:328–333.10.1053/ejvs.1999.0913
  • Perktold K, Peter RO, Resch M, Langs G. 1991. Pulsatile non-newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. J Biomed Eng. 13:507–515.10.1016/0141-5425(91)90100-L
  • Perktold K, Rappitsch G, Loew M, Kuban B, Friedman M. 1998. Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech. 31:217–228.
  • Petraco R, van de Hoef TP, Nijjer S, Sen S, van Lavieren MA, Foale RA, Meuwissen M, Broyd C, Echavarria-Pinto M, Foin N, et al. 2014. Baseline instantaneous wave-free ratio as a pressure-only estimation of underlying coronary flow reserve: results of the JUSTIFY-CFR Study (Joined Coronary Pressure and Flow Analysis to Determine Diagnostic Characteristics of Basal and Hyperemic Indices of Functional Lesion Severity-Coronary Flow Reserve). Circ Cardiovasc Interv. 7:492–502.10.1161/CIRCINTERVENTIONS.113.000926
  • Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, van’t Veer M, Klauss V, Manoharan G, Engstrøm T, et al. 2010. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 56:177–184.10.1016/j.jacc.2010.04.012
  • Qiu Y, Tarbell JM. 2000. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J Biomech Eng. 122:77–85.10.1115/1.429629
  • Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TM, Rossen JD, Sonka M, Chandran KB. 2004. Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion. Ann Biomed Eng. 32:1628–1641.10.1007/s10439-004-7816-3
  • Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP. 2011. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 124:779–788.10.1161/CIRCULATIONAHA.111.021824
  • Schuurbiers JC, Lopez NG, Ligthart J, Gijsen FJ, Dijkstra J, Serruys PW, Van der Steen AF, Wentzel JJ. 2009. In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (ANGUS). Catheter Cardiovasc Interv. 73:620–626.10.1002/ccd.v73:5
  • Slager CJ, Wentzel JJ, Gijsen FJH, Schuurbiers JCH, van der Wal AC, Van der Steen AF, Serruys PW. 2005. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin P Cardiovasc Med. 2:401–407.10.1038/ncpcardio0274
  • Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, Van der Wal AC, Schaar JA, Serruys PW. 2005. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat ClinP Cardiovasc Med. 2:456–464.10.1038/ncpcardio0298
  • Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M, Wahle A, Ilegbusi OJ, Yeghiazarians Y, Popma JJ, et al. 2003. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodelling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 108:438–444.10.1161/01.CIR.0000080882.35274.AD
  • Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL. 2007. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J. 28:705–710.10.1093/eurheartj/ehl575
  • Taylor C, Zairns TH. 1998. Finite element modelling of blood flow in arteries. Comput Methods Appl Mech Eng. 158:155–196.10.1016/S0045-7825(98)80008-X
  • Theodorakakos A, Gavaises M, Andriotis A, Zifan A, Liatsis P, Pantos I, Efstathopoulos EP, Katritsis D. 2008. Simulation of cardiac motion on non-Newtonian, pulsating flow development in the human left anterior descending coronary artery. Phys Med Biol. 53(18):4875–4892.10.1088/0031-9155/53/18/002
  • Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang GZ, Firmin DN, Mcg Thom SA, Xu XY. 2009. The effect of dynamic vessel motion on haemodynamic parameters in the right coronary artery: a combined MR and CFD study. Br J Radiol. 82:S24–S32.10.1259/bjr/62450556
  • Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD, Davies J. 2009. Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Meth Eng. 25:565–580.10.1002/cnm.v25:5
  • Yong ASC, Ng ACC, Brieger D, Lowe HC, Ng MKC, Kritharides L. 2011. Three-dimensional and two-dimensional quantitative coronary angiography and their prediction of reduced fractional flow reserve. Eur Heart J. 32:345–353.10.1093/eurheartj/ehq259
  • Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. 2008. A study on the compliance of a right coronary artery and its impact on wall shear stress. J Biomech Eng. 130:041014.10.1115/1.2937744
  • Zeng D, Ding Z, Friedman MH, Ethier CR. 2003. Effects of cardiac motion on right coronary artery hemodynamics. Ann Biomed Eng. 31:420–429.10.1114/1.1560631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.