648
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Blood flow in the cerebral venous system: modeling and simulation

, , &
Pages 471-482 | Received 20 Oct 2015, Accepted 10 Oct 2016, Published online: 01 Nov 2016

References

  • Boissonnat JD, Chaine R, Frey P, Malandain G, Salmon S, Saltel E, Thiriet M. 2005. From arteriographies to computational flow in saccular aneurisms: the INRIA experience. Med Image Anal. 9:133–143.
  • Caiazzo A, Montecinos G, Müller LO, Toro EF, Haacke EM. 2015. Computational haemodynamics in stenotic internal jugular veins. J Math Biol. 70:745–772.
  • Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF. 2005. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imag. 24:457–467.
  • Chabannes V, Ismail M, Prud’Homme C, Szopos M. 2015. Hemodynamic simulations in the cerebral venous network: a study on the influence of different modeling assumptions. J Coupled Syst Multiscale Dyn. 3:23–37.
  • Corsini C, Baker C, Kung E, Schievano S, Arbia G, Baretta A, Dorfman A. 2014. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Eng. 17:1572–1589.
  • Ford MD, Stuhne GR, Nikolov HN, Habets DF, Lownie SP, Holdsworth DW, Steinman DA. 2005. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans Med Imaging. 24:1586–1592.
  • Formaggia L, Perktold K, Quarteroni A. 2009. Basic mathematical models and motivations. In: Formaggia L, Quarteroni A, Veneziani A, editors. Cardiovascular mathematics. Modeling and simulation of the circulatory system, Vol. 1. Milan: Springer-Verlag Italia.
  • Fortin A, Durand E, Salmon S. 2014. Extension of an MRI simulator software for phase contrast angiography experiments. In: International Symposium on Biomedical Simulation (ISBMS), Lecture Notes in Computer Science. Switzerland: Springer International Publishing; p. 150–154.
  • Gadda G, Taibi A, Sisini F, Gambaccini M, Zamboni P, Ursino M. 2015. A new hemodynamic model for the study of cerebral venous outflow. Am J Physiol Heart Circ Physiol. 308:H217–H231.
  • Gambaruto A, Janela J, Moura A, Sequeira A. 2011. Sensitivity of haemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology. Math Biosci Eng. 8:409–423.
  • Gideon P, Thomsen C, Gjerris F, Sørensen PS, Ståhlberg F, Henriksen O. 1996. Measurement of blood flow in the superior sagittal sinus in healthy volunteers, and in patients with normal pressure hydrocephalus and idiopathic intracranial hypertension with phase-contrast cine MR imaging. Acta Radiol. 37:171–176.
  • Girault V, Raviart PA. 1986. Finite element methods for Navier--Stokes equations. Berlin: Springer-Verlag.
  • Gisolf J, van Lieshout JJ, van Heusden K, Pott F, Stok WJ, Karemaker JM. 2004. Human cerebral venous outflow pathway depends on posture and central venous pressure. J Physiol. 560:317–327.
  • Grinberg L, Cheever E, Anor T, Madsen JR, Karniadakis GE. 2011. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann Biomed Eng. 39:297–309.
  • Hecht F. 2012. New development in freefem++. J Numer Math. 20:251–265.
  • Ho H, Mithraratne K, Hunter P. 2013. Numerical simulation of blood flow in an anatomically-accurate cerebral venous tree. IEEE Trans Med Imaging. 32:85–91.
  • Jurczuk K, Kretowski M, Eliat P-A, Bellanger J-J, Saint-Jalmes H, Bézy-Wendling J. 2012. A new approach in combined modeling of MRI and blood flow: a preliminary study. In: International Symposium on Biomedical Imaging: p. 812–815.
  • Kiliç T, Akakin A. 2008. Anatomy of cerebral veins and sinuses. Front Neurol Neurosci. 23:4–15.
  • Miraucourt O, Garnotel S. n.d. Numerical tour of fluid dynamics. [cited 2016-06-30]; Available from: http://numtourcfd.univ-reims.fr
  • Miraucourt O, Génevaux O, Szopos M, Thiriet M, Talbot H, Salmon S, Passat N. 2014. 3D CFD in complex vascular systems: a case study. International Symposium on Biomedical Simulation (ISBMS), Lecture Notes in Computer Science. Springer; p. 86–94.
  • Miyazaki M, Lee VS. 2008. Nonenhanced MR angiography. Radiology. 248:20–43.
  • Morales HG, Larrabide I, Geers AJ, San Román L, Blasco J, Macho JM, Frangi AF. 2013. A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE Trans Med Imaging. 32:119–129.
  • Müller LO, Toro EF. 2014a. A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int J Numer Methods Biomed Eng. 30:681–725.
  • Müller LO, Toro EF. 2014b. Enhanced global mathematical model for studying cerebral venous blood flow. J Biomech. 47:3361–3372.
  • Ogoh S, Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH. 2011. The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects. Clin Physiol Funct Imaging. 31:445–451.
  • Ozsarlak O, Van Goethem JW, Maes M, Parizel PM. 2004. MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology. 46:955–972.
  • Passerini T, De Luca M, Formaggia L, Quarteroni A, Veneziani A. 2009. A 3D/1D geometrical multiscale model of cerebral vasculature. J Eng Math. 64:319–330.
  • Pironneau O. 1982. On the transport-diffusion algorithm and its applications to the Navier--Stokes equations. Numer Math. 38:309–332.
  • Retarekar R, Ramachandran M, Berkowitz B, Harbaugh RE, Hasan D, Rosenwasser RH, Ogilvy CS, Raghavan ML. 2015. Stratification of a population of intracranial aneurysms using blood flow metrics. Comput Methods Biomech Biomed Eng. 18:1072–1082.
  • Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. 2009. Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol. 297:208–222.
  • Schaller B. 2004. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Rev. 46:243–260.
  • Sforza DM, Löhner R, Putman C, Cebral JR. 2010. Hemodynamic analysis of intracranial aneurysms with moving parent arteries: basilar tip aneurysms. Int J Numer Methods Biomed Eng. 26:1219–1227.
  • Shojima M, Morita A, Kimura T, Oshima M, Kin T, Saito N. 2014. Computational fluid dynamic simulation of a giant basilar tip aneurysm with eventual rupture after hunterian ligation. World Neurosurg. 82:535.e5–535.e9.
  • Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer ME, Deramond H, Balédent O. 2009. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 29:1208–1215.
  • Thiriet M. 2008. Biology and mechanics of blood flows, part I: biology of blood flows, part II: mechanics and medical aspects of blood flows, CRM series in mathematical physics. New York: Springer.
  • Thiriet M. 2011. Cell and tissue organization in the circulatory and ventilatory systems. Biomathematical and biomechanical modeling of the circulatory and ventilatory systems Vol. 1, New York: Springer.
  • Ursino M, Lodi CA. 1997. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 82:1256–1269.
  • Wang S, Ding G, Zhang Y, Yang X. 2011. Computational haemodynamics in two idealised cerebral wide-necked aneurysms after stent placement. Comput Methods Biomech Biomed Eng. 14:927–937.
  • Xiao N, Alastruey J, Figueroa CA. 2014. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int J Numer Methods Biomed. Eng. 30:204–231.
  • Xiao N, Humphrey JD, Figueroa CA. 2013. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J Comput Phys. 244:22–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.