282
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study

, &
Pages 626-635 | Received 31 May 2016, Accepted 11 Jan 2017, Published online: 09 Feb 2017

References

  • Anderson FC, Pandy MG. 2003. Individual muscle contributions to support in normal walking. Gait Posture. 17:159–169.10.1016/S0966-6362(02)00073-5
  • Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE. 2007. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 15:387–400.10.1109/TNSRE.2007.903922
  • Banala SK, Kim SH, Agrawal SK, Scholz JP. 2009. Robot Assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 17:2–8.10.1109/TNSRE.2008.2008280
  • Colombo G, Joerg M, Schreie R, Dietz V. 2000. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 37:693–700.
  • Dietz V, Müller R, Colombo G. 2002. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 125:2626–2634.10.1093/brain/awf273
  • Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P. 2001. Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol. 530:167–180.10.1111/tjp.2001.530.issue-1
  • Finch L, Barbeau H, Arsenault B. 1991. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther. 71:842–856.
  • Frey M, Colombo G, Vaglio M, Bucher R, Jörg M Riener R. 2006. A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 14:311–321.10.1109/TNSRE.2006.881556
  • Gazzani F, Fadda A, Torre M, Macellari V. 2000. WARD: a pneumatic system for body weight relief in gait rehabilitation. IEEE Trans Rehabil Eng. 8:506–513.10.1109/86.895954
  • Gerritsen KGM, Van Den Bogert AJ, Nigg BM. 1995. Direct dynamics simulation of the impact phase in heel-toe running. J Biomech. 28:661–668.10.1016/0021-9290(94)00127-P
  • Geyer H, Herr H. 2010. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng. 18:263–273.10.1109/TNSRE.2010.2047592
  • Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. 1997. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol. 77:797–811.
  • Hicks J, Arnold A, Anderson F, Schwartz M, Delp S. 2007. The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. Gait Posture. 26:546–552.10.1016/j.gaitpost.2006.12.003
  • Hidler J, Neckel N. Inverse-dynamics based assessment of gait using a robotic orthosis. In: Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 1; 2006. IEEE Engineering in Medicine and Biology Society; p. 185–188.
  • Hidler JM, Wall AE. 2005. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 20:184–193.10.1016/j.clinbiomech.2004.09.016
  • Hof AL, Elzinga H, Grimmius W, Halbertsma JPK. 2002. Speed dependence of averaged EMG profiles in walking. Gait Posture. 16:78–86.10.1016/S0966-6362(01)00206-5
  • Hussain S. 2014. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects. NeuroRehabilitation. 35:701–709.
  • Hussain S, Xie SQ, Liu G. 2011. Robot assisted treadmill training: mechanisms and traning strategies. Med Eng Phys. 33:527–53310.1016/j.medengphy.2010.12.010.
  • Hussain S, Xie SQ, Jamwal PK, Parsons J. 2012. An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys. 34:1448–1453.10.1016/j.medengphy.2012.02.003
  • Hussain S, Xie SQ, Jamwal PK. 2013a. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybern. 43:1025–1034.10.1109/TSMCB.2012.2222374
  • Hussain S, Xie SQ, Jamwal PK. 2013b. Effect of cadence regulation on muscle activation patterns during robot-assisted gait: a dynamic simulation study. IEEE J Biomed Health Inf. 17:442–451.10.1109/TITB.2012.2226596
  • Hussain S, Xie SQ, Jamwal PK. 2013c. Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Trans Syst Man Cybern Syst. 43:655–665.10.1109/TSMCA.2012.2207111
  • Ivanenko YP, Grasso R, Macellari V, Lacquaniti F. 2002. Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. J Neurophysiol. 87:3070–3089.
  • Jezernik S, Colombo G, Morari M. 2004. Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis. IEEE Trans Rob Autom. 20:574–582.10.1109/TRA.2004.825515
  • Klarner T, Chan HK, Wakeling JM, Lam T. 2010. Patterns of muscle coordination vary with stride frequency during weight assisted treadmill walking. Gait Posture. 31:360–365.10.1016/j.gaitpost.2010.01.001
  • Moré JJ, Toraldo G. 1989. Algorithms for bound constrained quadratic programming problems. Numerische Mathematik. 55:377–400.10.1007/BF01396045
  • Neckel ND, Blonien N, Nichols D, Hidler J. 2008. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J NeuroEng Rehabil. 5.
  • Pandy MG. 2001. Computer modeling and simulation of human movement. Annu Rev Biomed Eng. 3:245–273.10.1146/annurev.bioeng.3.1.245
  • Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. 2005. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 13:380–394.10.1109/TNSRE.2005.848628
  • Steele KM, Seth A, Hicks JL, Schwartz MS, Delp SL. 2010. Muscle contributions to support and progression during single-limb stance in crouch gait. J Biomech. 43:2099–2105.10.1016/j.jbiomech.2010.04.003
  • Swinnen E, Baeyens JP, Hens G, Knaepen K, Beckwée D, Michielsen M, Clijsen R, Kerckhofs E. 2015a. Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics. NeuroRehabilitation. 36:81–91.
  • Swinnen E, Baeyens JP, Hens G, Knaepen K, Beckwée D, Michielsen M, Clijsen R, Kerckhofs E. 2015b. Robot-assisted walking with the Lokomat: the influence of different levels of guidance force on thorax and pelvis kinematics. Clin Biomech. 30:254–259.10.1016/j.clinbiomech.2015.01.006
  • Swinnen E, Baeyens JP, Hens G, Knaepen K, Beckwée D, Michielsen M, Clijsen R, Kerckhofs E. 2015c. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics. Disability Rehabil Assistive Technol. 10:252–257.10.3109/17483107.2014.888487
  • Ueda J, Ming D, Krishnamoorthy V, Shinohara M, and Ogasawara T. 2010. Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Trans Neural Syst Rehabil Eng. 18:339–350.10.1109/TNSRE.2010.2047116
  • Van Kammen K, Boonstra A, Reinders-Messelink H, den Otter R. 2014. The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the lokomat exoskeleton and regular treadmill walking. PLoS One. 9.
  • Van Kammen K, Boonstra AM, van der Woude LH, Reinders-Messelink HA, den Otter R. 2016. The combined effects of guidance force, bodyweight support and gait speed on muscle activity during able-bodied walking in the Lokomat. Clin Biomech. 36:65–73.10.1016/j.clinbiomech.2016.04.013
  • Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H. 2007. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 15:379–386.10.1109/TNSRE.2007.903919
  • Winter DA. 1991. The biomechanics and motor control of human gait: normal, elderly and pathological. 2nd ed. Waterloo: University of Waterloo Press.
  • Yamaguchi GT. 2001. Dynamic modeling of musculoskeletal motion – a vectorized approach for biomechanical analysis in three dimensions. 1st ed. US: Springer.
  • Zajac FE. 2002. Understanding muscle coordination of the human leg with dynamical simulations. J Biomech. 35:1011–1018.10.1016/S0021-9290(02)00046-5
  • Zajac FE, Neptune RR, Kautz SA. 2002. Biomechanics and muscle coordination of human walking: part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture. 16:215–232.10.1016/S0966-6362(02)00068-1
  • Zajac FE, Neptune RR, Kautz SA. 2003. Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait Posture. 17:1–17.10.1016/S0966-6362(02)00069-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.