869
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Computational fluid dynamics study of common stent models inside idealised curved coronary arteries

, , , , &
Pages 671-681 | Received 04 Jul 2016, Accepted 28 Jan 2017, Published online: 09 Feb 2017

References

  • Arzani A, Shadden SC. 2016. Characterizations and correlations of wall shear stress in aneurysmal flow. J Biomech Eng. 138:014503.
  • Balossino R, Gervaso F, Migliavacca F, Dubini G. 2008. Effects of different stent designs on local hemodynamics in stented arteries. J Biomech. 41:1053–1061.10.1016/j.jbiomech.2007.12.005
  • Berger SA, Talbot L, Yao LS. 1983. Flow in curved pipes. Annu Rev Fluid Mech. 15:461–512.10.1146/annurev.fl.15.010183.002333
  • Biswas G, Breuer M, Durst F. 2004. Backward-facing step flows for various expansion ratios at low and moderate reynolds numbers. J Fluids Eng. 126:362–374.10.1115/1.1760532
  • Caro CG, Seneviratne A, Heraty KB, Monaco C, Burke MG, Krams R, Chang CC, Coppola G, Gilson P. 2013. Intimal hyperplasia following implantation of helical-centreline and straight-centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow . J R Soc Interface. 10:20130578.10.1098/rsif.2013.0578
  • Chiastra C, Migliavacca F, Martínez MÁ. 2014. On the necessity of modelling fluid–structure interaction for stented coronary arteries. J Mech Behav Biomed Mater. 34:217–230.10.1016/j.jmbbm.2014.02.009
  • Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cardenes R, Larrabide I, Migliavacca F. 2013. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc interface. 10:20130193.10.1098/rsif.2013.0193
  • Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA. 1986. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA. 83:2114–2117.10.1073/pnas.83.7.2114
  • Davies JE, Parker KH, Francis DP, Hughes AD, Mayet J. 2008. What is the role of the aorta in directing coronary blood flow? Heart. 94:1545–1547.10.1136/hrt.2008.144808
  • Dehlaghi V, Shadpoor MT, Najarian S. 2008. Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling. J Mater Process Technol. 197:174–181.10.1016/j.jmatprotec.2007.06.010
  • Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. 1981. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 103:177–185.10.1115/1.3138276
  • Ellwein LM, Otake H, Gundert TJ, Koo BK, Shinke T, Honda Y, Shite J, LaDisa JF. 2011. Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. Cardiovasc Eng Technol. 2:212–227.10.1007/s13239-011-0047-5
  • Frank AO, Walsh PW, Moore JE. 2002. Computational fluid dynamics and stent design. Artif Organs. 26:614–621.10.1046/j.1525-1594.2002.07084.x
  • Gada H, Kirtane AJ, Newman W, Sanz M, Hermiller JB, Mahaffey KW, Cutlip DE, Sudhir K, Hou L, Koo K, et al. 2013. 5-Year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents. JACC Cardiovasc Interv. 6:1263–1266.10.1016/j.jcin.2013.07.009
  • Girard PR, Nerem RM. 1995. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol. 163:179–193.10.1002/(ISSN)1097-4652
  • Gousios A, Shearn MA. 1959. Effect of intravenous heparin on human blood viscosity. Circulation. 20:1063–1066.10.1161/01.CIR.20.6.1063
  • Gundert TJ, Dholakia RJ, McMahon D, LaDisa JF. 2013. computational fluid dynamics evaluation of equivalency in hemodynamic alterations between driver, integrity, and similar stents implanted into an idealized coronary artery. J Med Device. 7:011004.
  • Gundert TJ, Shadden SC, Williams AR, Koo BK, Feinstein JA, LaDisa JF. 2011. A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models. Ann Biomed Eng. 39:1423–1437.10.1007/s10439-010-0238-5
  • Gundert TJ, Marsden AL, Yang W, LaDisa JF. 2012. Optimization of cardiovascular stent design using computational fluid dynamics. J Biomech Eng. 134:011002.10.1115/1.4005542
  • Hasan M, Rubenstein DA, Yin W. 2013. Effects of cyclic motion on coronary blood flow. J Biomech Eng. 135:121002.10.1115/1.4025335
  • Hsiao H, Lin C, Liao Y, Chen H, Wang T. 2014. Hemodynamic behavior of coronary stents in straight and curved arteries. Curr Nanosci. 10:205–211.10.2174/1573413709666131129000833
  • Kastrati A, Mehilli J, Dirschinger J, Pache J, Ulm K, Schühlen H, Seyfarth M, Schmitt C, Blasini R, Neumann FJ, et al. 2001. Restenosis after coronary placement of various stent types. Am J Cardiol. 87:34–39.
  • Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalama VB, Nguyen-Ehrenreich KL, Giddings VL, Coleman L, Wong GK, Edelman ER. 2011. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 123:1400–1409.10.1161/CIRCULATIONAHA.110.003210
  • Ku DN. 1997. Blood flow in arteries. Annu Rev Fluid Mech. 29:399–434.10.1146/annurev.fluid.29.1.399
  • LaDisa JF, Guler I, Olson LE, Hettrick DA, Kersten JR, Warltier DC, Pagel PS. 2003. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann Biomed Eng. 31:972–980.10.1114/1.1588654
  • LaDisa JF, Olson LE, Douglas HA, Warltier DC, Kersten JR, Pagel PS. 2006. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed Eng Online. 5:40. http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-5-40
  • LaDisa JF, Olson LE, Guler I, Hettrick DA, Audi SH, Kersten JR, Warltier DC, Pagel PS. 2004. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol. 97:424–430.10.1152/japplphysiol.01329.2003
  • Levesque MJ, Nerem RM. 1985. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. 107:341–347.10.1115/1.3138567
  • Liu B, Zheng J, Bach R, Tang D. 2015. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery. Biomed Eng Online. 14:1–18.
  • Malek AM, Alper SL. 1999. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc. 282:2035–2042.10.1001/jama.282.21.2035
  • Martin DM, Murphy EA, Boyle FJ. 2014. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Med Eng Phys. 36:1047–1056.10.1016/j.medengphy.2014.05.011
  • Matyka M, Koza Z, Mirosław Ł. 2013. Wall orientation and shear stress in the lattice Boltzmann model. Comput Fluids. 73:115–123.10.1016/j.compfluid.2012.12.018
  • Moore JE, Berry JL. 2002. Fluid and solid mechanical implications of vascular stenting. Ann Biomed Eng. 30:498–508.10.1114/1.1458594
  • Murphy J, Boyle F. 2010. Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Comput Biol Med. 40:408–418.10.1016/j.compbiomed.2010.02.005
  • Murphy EA, Boyle FJ. 2012. reducing in-stent restenosis through novel stent flow field augmentation. Cardiovasc Eng Technol. 3:353–373.10.1007/s13239-012-0109-3
  • Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR. 2001. Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng. 29:109–120.10.1114/1.1349703
  • Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SE. 2015. Europe PMC Funders Group global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 385:117–171.
  • Pant S, Bressloff NW, Forrester AI, Curzen N. 2010. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann Biomed Eng. 38:1893–1907.10.1007/s10439-010-9962-0
  • Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. 2012. In-stent neoatherosclerosis. J Am Coll Cardiol. 59:2051–2057.10.1016/j.jacc.2011.10.909
  • Petrini L, Migliavacca F, Auricchio F, Dubini G. 2004. Numerical investigation of the intravascular coronary stent flexibility. J Biomech. 37:495–501.10.1016/j.jbiomech.2003.09.002
  • Poon EKW, Barlis P, Moore S, Pan W-H, Liu Y, Ye Y, Xue Y, Zhu SJ, Ooi ASH. 2014. Numerical investigations of the haemodynamic changes associated with stent malapposition in an idealised coronary artery. J Biomech. 47:2843–2851.10.1016/j.jbiomech.2014.07.030
  • Raben JS, Morlacchi S, Burzotta F, Migliavacca F, Vlachos PP. 2015. Local blood flow patterns in stented coronary bifurcations: an experimental and numerical study. Mater: J. Appl. Biomater. Funct; p. 13.
  • Santos MC, Lin T, Barlis P. 2011. In-stent restenosis associated with stent malapposition: seven year optical coherence tomography findings. Int J Cardiol. 147:149–151.10.1016/j.ijcard.2010.02.068
  • Sarno G, Lagerqvist B, Nilsson J, Frobert O, Hambraeus K, Varenhorst C, Jensen UJ, Tödt T, Götberg M, James SK. 2014. Stent thrombosis in new-generation drug-eluting stents in patients with STEMI undergoing primary PCI. J Am Coll Cardiol. 64:16–24.10.1016/j.jacc.2014.04.022
  • Serruys PW, Garcia-Garcia HM, Onuma Y. 2012. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 33:16–25.10.1093/eurheartj/ehr384
  • Tada S, Oshima S, Yamane R. 1996. Classification of pulsating flow patterns in curved pipes. J Biomech Eng. 118:311–317.10.1115/1.2796012
  • Takayuki O, Kazuo O, Tomohisa N, Kosuke M, Michihiro Y. 2014. A pilot study for a bench test of the mechanical properties of the platforms for second-generation drug-eluting stents. Jikeikai Med J. 61:29–34.
  • Tambaca J, Canic S, Kosor M, Fish RD, Paniagua D. 2011. Mechanical behavior of fully expanded commercially available endovascular coronary stents. Texas Hear Inst J. 38:491–501.
  • Tanigawa J, Barlis P, Dimopoulos K, Dalby M, Moore P, Di Mario C. 2009. The influence of strut thickness and cell design on immediate apposition of drug-eluting stents assessed by optical coherence tomography. Int J Cardiol. 134:180–188.10.1016/j.ijcard.2008.05.069
  • Taylor CA, Fonte TA, Min JK. 2013. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. J Am Coll Cardiol. 61:2233–2241.
  • Womersley JR. 1955. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol. 127:553–563.10.1113/jphysiol.1955.sp005276
  • van Wyk S, Prahl Wittberg L, Bulusu kV, Fuchs L, Plesniak MW. 2015. Non-Newtonian perspectives on pulsatile blood-analog flows in a 180° curved artery model. Phys Fluids. 27:071901.10.1063/1.4923311
  • Zeng D, Ding Z, Friedman MH, Ethier CR. 2003. Effects of cardiac motion on right coronary artery hemodynamics. Ann Biomed Eng. 31:420–429.10.1114/1.1560631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.