306
Views
16
CrossRef citations to date
0
Altmetric
Articles

Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study

, , , , , , , , & show all
Pages 1312-1325 | Received 01 Nov 2016, Accepted 17 Jul 2017, Published online: 03 Aug 2017

References

  • Augat P, Link T, Lang TF, Lin JC, Majumdar S, Genant HK. 1998 Mar. Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. Med Eng Phys. 20:124–131.10.1016/S1350-4533(98)00001-0
  • Basaruddin KS, Takano N, Akiyama H, Nakano T. 2013. Uncertainty modeling in the prediction of effective mechanical properties using stochastic homogenization method with application to porous trabecular bone. Mat Trans. 54:1250–1256.
  • Basler SE, Traxler J, Muller R, van Lenthe GH. 2013 Oct. Peri-implant bone microstructure determines dynamic implant cut-out. Med Eng Phys. 35:1442–1449.
  • Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. 2001 Jul. Hip contact forces and gait patterns from routine activities. J Biomech. 34:859–871.
  • Bloebaum RD, Mihalopoulus NL, Jensen JW, Dorr LD. 1997 Jul. Postmortem analysis of bone growth into porous-coated acetabular components. J Bone Joint Surg Am. 79:1013–1022.
  • Carter DR, Vasu R, Harris WH. 1983 Feb. Periacetabular stress distributions after joint replacement with subchondral bone retention. Acta Orthop Scand. 54:29–35.10.3109/17453678308992866
  • Chiba K, Ito M, Osaki M, Uetani M, Shindo H. 2011 Feb. In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row CT. Osteoarthritis Cartilage. 19:180–185.10.1016/j.joca.2010.11.002
  • Cook SD, Walsh KA, Haddad RJ Jr. 1985 Mar. Interface mechanics and bone growth into porous Co–Cr–Mo alloy implants. Clin Orthop Relat Res. 193:271–280.
  • Curtis MJ, Jinnah RH, Wilson VD, Hungerford DS. 1992 May. The initial stability of uncemented acetabular components. J Bone Joint Surg Br. 74:372–376.
  • Fehring KA, Owen JR, Kurdin AA, Wayne JS, Jiranek WA. 2014 May. Initial stability of press-fit acetabular components under rotational forces. J Arthroplasty. 29:1038–1042.10.1016/j.arth.2013.10.009
  • Ghosh R, Gupta S, Dickinson A, Browne M. 2012 Aug. Experimental validation of finite element models of intact and implanted composite hemipelvises using digital image correlation. J Biomech Eng. 134:081003.10.1115/1.4007173
  • Ghosh R, Mukherjee K, Gupta S. 2013 May. Bone remodelling around uncemented metallic and ceramic acetabular components. Proc Inst Mech Eng H. 227:490–502.10.1177/0954411913478703
  • Goebel P, Kluess D, Wieding J, Souffrant R, Heyer H, Sander M, Bader R. 2013 Mar. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis. J Orthop Sci. 18:264–270.10.1007/s00776-012-0340-7
  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA. 1994. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 27:375–389.10.1016/0021-9290(94)90014-0
  • Guedes JM, Kikuchi N. 1990. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Meth Appl Mech Eng. 83:143–198.10.1016/0045-7825(90)90148-F
  • Guedes JM, Kikuchi N. 1990. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Meth Appl Mech Eng. 83:143–198.10.1016/0045-7825(90)90148-F
  • Guipieri S, Nagatani Y, Bosc R, Nguyen VH, Chappard C, Geiger D, Haïat G. 2015 Nov. Ultrasound speed of sound measurements in trabecular bone using the echographic response of a metallic pin. Ultrasound Med Biol. 41:2966–2976.
  • Haïat G, Padilla F, Svrcekova M, Chevalier Y, Pahr D, Peyrin F, Laugier P, Zysset P. 2009. Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach. J Biomech. 42:2033–2039.10.1016/j.jbiomech.2009.06.008
  • Haïat G, Wang HL, Brunski J. 2014. Effects of biomechanical properties of the bone–implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Annu Rev Biomed Eng. 16:187–213.10.1146/annurev-bioeng-071813-104854
  • Hart R. 2001. Bone modeling and remodeling: theories and computation. In: Cowin SC, editor. Bone mechanics handbook. Boca Raton (FL): CRC Press; 31-1–31-42.
  • Hellmich C, Kober C, Erdmann B. 2008 Jan. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng. 36:108–122.10.1007/s10439-007-9393-8
  • Henys P, Capek L, Fencl J, Prochazka E. 2015 Jan. Evaluation of acetabular cup initial fixation by using resonance frequency principle. Proc Inst Mech Eng H. 229:3–8.10.1177/0954411914561485
  • Hodgskinson R, Currey JD. 1993. Separate effects of osteoporosis and density on the strength and stiffness of human cancellous bone. Clin Biomech. 8:262–268.10.1016/0268-0033(93)90036-H
  • Hollister SJ, Kikuchi N. 1994. Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue. Biotechnol Bioeng. 43:586–596.10.1002/(ISSN)1097-0290
  • Hothi HS, Busfield JJ, Shelton JC. 2011 Mar. Explicit finite element modelling of the impaction of metal press-fit acetabular components. Proc Inst Mech Eng H. 225:303–314.
  • Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, Fyhrie DP. 1998. Human vertebral body apparent and hard tissue stiffness. J Biomech. 31:1009–1015.10.1016/S0021-9290(98)00110-9
  • Hsu JT, Chang CH, Huang HL, Zobitz ME, Chen WP, Lai KA, An KN. 2007 Dec. The number of screws, bone quality, and friction coefficient affect acetabular cup stability. Med Eng Phys. 29:1089–1095.10.1016/j.medengphy.2006.11.005
  • Janssen D, Zwartelé RE, Doets HC, Verdonschot N. 2010. Computational assessment of press-fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties. Proc Inst Mech Eng H. 224:67–75.10.1243/09544119 JEIM645
  • Lin ZM, Meakins S, Morlock MM, Parsons P, Hardaker C, Flett M, Isaac G. 2006 Feb. Deformation of press-fitted metallic resurfacing cups. Part 1: experimental simulation. Proc Inst Mech Eng H. 220:299–309.
  • Lions JL. 1981. Some methods in the mathematical analysis of systems and their control. New York (NY): Gordon and Breach.
  • Ma W, Zhang X, Wang J, Zhang Q, Chen W, Zhang Y. 2013 Jan. Optimized design for a novel acetabular component with three wings. A study of finite element analysis. J Surg Res. 179:78–86.10.1016/j.jss.2012.08.036
  • MacKenzie JR, Callaghan JJ, Pedersen DR, Brown TD 1994 Jan. Areas of contact and extent of gaps with implantation of oversized acetabular components in total hip arthroplasty. Clin Orthop Relat Res. 298:127–136.
  • Mathieu V, Michel A, Flouzat Lachaniette CH, Poignard A, Hernigou P, Allain J, Haïata G. 2013. Variation of the impact duration during the in vitro insertion of acetabular cup implants. Med Eng Phys. 35:1558–1563.10.1016/j.medengphy.2013.04.005
  • Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP, Haiat G. 2014. Biomechanical determinants of the stability of dental implants: Influence of the bone–implant interface properties. J Biomech. 47:3–13.10.1016/j.jbiomech.2013.09.021
  • Matsuda T, Ito T, Akimoto S, Kobori H, Goto K, Takano N. 2016. Macro/micro simultaneous validation for multiscale analysis of semi-periodically perforated plate using full-field strain measurement. Int J Mech Sci. 110:34–40.10.1016/j.ijmecsci.2016.02.007
  • Matsunaga S, Shirakura Y, Ohashi T, Nakahara K, Tamatsu Y, Takano N, Ide Y. 2010 Jul–Aug. Biomechanical role of peri-implant cancellous bone architecture. Int J Prosthodont. 23:333–338.
  • Michel A, Bosc R, Sailhan F, Vayron R, Haiat G 2015 Dec 3. Ex vivo estimation of cementless acetabular cup stability using an impact hammer. Med Eng Phys. 55:781–791.
  • Michel A, Nguyen V, Bosc R, Vayron R, Naili S, Haïat G, Hernigou P. 2017. Finite element model of the impaction of a press-fitted acetabular cup. Med Biol Eng Comput.
  • Michel A, Bosc R, Vayron R, Haiat G. 2015 Mar. In vitro evaluation of the acetabular cup primary stability by impact analysis. J Biomech Eng. 137:031011.
  • Michel A, Bosc R, Mathieu V, Hernigou P, Haiat G. 2014 Oct. Monitoring the press-fit insertion of an acetabular cup by impact measurements: influence of bone abrasion. Proc Inst Mech Eng H. 228:1027–1034.
  • Mueller LA, Kress A, Nowak T, Pfander D, Pitto RP, Forst R, Schmidt R. 2006 Jun. Periacetabular bone changes after uncemented total hip arthroplasty evaluated by quantitative computed tomography. Acta Orthop. 77:380–385.10.1080/17453670610046299
  • Mueller LA, Schmidt R, Ehrmann C, Nowak TE, Kress A, Forst R, Pfander D. 2009 Feb. Modes of periacetabular load transfer to cortical and cancellous bone after cemented versus uncemented total hip arthroplasty: a prospective study using computed tomography-assisted osteodensitometry. J Orthop Res. 27:176–182.10.1002/jor.v27:2
  • Nakasone S, Takao M, Nishii T, Sakai T, Sugano N. 2012 Oct. Incidence and natural course of initial polar gaps in Birmingham Hip Resurfacing cups. J Arthroplasty. 27:1676–1682.
  • Ohashi T, Matsunaga S, Nakahara K, Abe S, Ide Y, Tamatsu Y, Takano N. 2010 Oct. Biomechanical role of peri-implant trabecular structures during vertical loading. Clin Oral Investig. 14:507–513.
  • Ong KL, Lehman J, Notz WI, Santner TJ, Bartel DL. 2006 Apr. Acetabular cup geometry and bone-implant interference have more influence on initial periprosthetic joint space than joint loading and surgical cup insertion. J Biomech Eng. 128:169–175.
  • Perona PG, Lawrence J, Paprosky WG, Patwardhan AG, Sartori M. 1992 Dec. Acetabular micromotion as a measure of initial implant stability in primary hip arthroplasty. J Arthroplasty. 7:537–547.10.1016/S0883-5403(06)80076-8
  • Phillips AT, Pankaj P, Usmani, AS, Howie CR. 2004. The effect of acetabular cup size on the short-term stability of revision hip arthroplasty: a finite element investigation. Proc Inst Mech Eng H. 218:239–249.10.1243/0954411041560992
  • Ruffoni D, Wirth AJ, Steiner JA, Parkinson IH, Müller R, van Lenthe GH. 2012 Mar. The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone. 50:733–738.10.1016/j.bone.2011.11.027
  • Sansalone V, Naili S, Bousson V, Bergot C, Peyrin F, Zarka J, Haïat G. 2010. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. J Biomech. 43:1857–1863.10.1016/j.jbiomech.2010.03.034
  • Sansalone V, Bousson V, Naili S, Bergot C, Peyrin F, Laredo JD, Haïat G. 2012 Apr. Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: impact on biomechanical properties. Bone. 50:876–884.10.1016/j.bone.2011.12.020
  • Spears IR, Pfleiderer M, Schneider E, Hille E, Morlock MM. 2001 Jan. The effect of interfacial parameters on cup–bone relative micromotions. J Biomech. 34:113–120.10.1016/S0021-9290(00)00112-3
  • Spears IR, Morlock MM, Pfleiderer M, Schneider E, Hille E. 1999 Nov. The influence of friction and interference on the seating of a hemispherical press-fit cup: a finite element investigation. J Biomech. 32:1183–1189.
  • Spears IR, Pfleiderer M, Schneider E, Hille E, Bergmann G, Morlock MM. 2000 Nov. Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth. J Biomech. 33:1471–1477.
  • Takano N, Ohnishi Y, Zako M, Nishiyabu K. 2001. Microstructure-based deep-drawing simulation of knitted fabric reinforced thermoplastics by homogenization theory. Int J Solids Struct. 38:6333–6356.10.1016/S0020-7683(00)00418-2
  • Takano N, Zako M, Kubo F, Kimura K. 2003. Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling. Int J Solids Struct. 40:1225–1242.10.1016/S0020-7683(02)00642-X
  • Takano N, Fukasawa K, Nishiyabu K. 2010. Structural strength prediction for porous titanium based on micro-stress concentration by micro-CT image-based multiscale simulation. Int J Mech Sci. 52:229–235.10.1016/j.ijmecsci.2009.09.013
  • Ting TCT. 1996. Anisotropic elasticity theory and applications. Oxford: Oxford University Press.
  • Tsukino M, Takano N, Michel A, Haïat G. 2015. Multiscale stress analysis of trabecular bone around acetabular cup implant by finite element mesh superposition method. JSME MEL (Mech Eng Lett). 1:15–00354.
  • van den Bergh JP, van Lenthe GH, Hermus AR, Corstens FH, Smals AG, Huiskes R. 2000 May. Speed of sound reflects Young’s modulus as assessed by microstructural finite element analysis. Bone. 26:519–524.10.1016/S8756-3282(00)00249-0
  • van Rietbergen B. 2001. Micro-FE analyses of bone: state of the art. Adv Exp Med Biol. 496:21–30.10.1007/978-1-4615-0651-5
  • Voigt C, Klöhn C, Bader R, von Salis-Soglio G, Scholz R. 2007 Apr. Finite element analysis of shear stresses at the implant-bone interface of an acetabular press-fit cup during impingement. Biomed Tech (Berl). 52:208–215.10.1515/BMT.2007.038
  • Wengler A, Nimptsch U, Mansky T. 2014. Hip and knee replacement in Germany and the USA: analysis of individual inpatient data from German and US hospitals for the years 2005 to 2011. Dtsch Arztebl Int. 111:407–416.
  • Yew A, Jin ZM, Donn A, Morlock MM, Isaac G. 2006 Feb. Deformation of press-fitted metallic resurfacing cups. Part 2: Finite element simulation. Proc Inst Mech Eng H. 220:311–319.10.1243/095441105X69105
  • Yoshiwara Y, Clanche M, Basaruddin KS, Takano N, Nakano T. 2011. Numerical study on the morphology and mechanical role of healthy and osteoporotic vertebral trabecular bone. J Biomech Sci Eng. 6:270–285.10.1299/jbse.6.270
  • Yosibash Z, Trabelsi N, Hellmich C. 2008. Subject-specific p-FE analysis of the proximal femur utilizing micromechanics-based material properties. Int J Multiscale Computational Engineering. 6:483–498.10.1615/IntJMultCompEng.v6.i5
  • Zietz C, Fritsche A, Kluess D, Mittelmeier W, Bader R. 2009 Nov. Influence of acetabular cup design on the primary implant stability : an experimental and numerical analysis. Orthopade. 38:1097–1105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.