3,318
Views
1
CrossRef citations to date
0
Altmetric
Articles

Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis

, &
Pages 219-231 | Received 04 Sep 2017, Accepted 07 Feb 2018, Published online: 15 Feb 2018

References

  • Arends J, Perkins KD, Zhang J, Polyakov I, Lee E. 2008. A new technique for the surgical creation of aneurysms in an in vivo tortuous vessel model to test neurovascular devices. J Invest Surg. 21(1):39–45.
  • Bathe K. 2013. Adina theory and modeling guide. Vol. III, ADINA CFD & FSI. ADINA R &D: Watertown (MA).
  • Biasetti J, Hussain F, Gasser TC. 2011. Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation. J Roy Soc Interface. 8:1449–1461. doi:10.1098/rsif.2011.0041.
  • Bluestein D, Dumont K, De Beule M, Ricotta J, Impellizzeri P, Verhegghe B, Verdonck P. 2009. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm -- fsi modelling. Comput Methods Biomech Biomed Engin. 12(1):73–81.
  • Chandra S, Raut SS, Jana A, Biederman RW, Doyle M, Muluk SC, Finol EA. 2013. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J Biomech Eng. 135(8):0810011–08100114.
  • Chervu A, Clagett GP, Valentine RJ, Myers SI, Rossi PJ. 1995. Role of physical examination in detection of abdominal aortic aneurysms. Surgery. 117(4):454–457. http://www.sciencedirect.com/science/article/pii/S0039606005800674.
  • Chesnutt JKW, Han HC. 2011. Tortuosity triggers platelet activation and thrombus formation in microvessels. J Biomech Eng. 133(12): 121004–121004-11. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489919/.
  • Datir P, Lee AY, Lamm SD, Han HC. 2011. Effects of geometric variations on the buckling of arteries. Int J Appl Mech. 3(2):385–406. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266375/.
  • Demolis PD, Asmar RG, Levy BI, Safar ME. 1991. Non-invasive evaluation of the conduit function and the buffering function of large arteries in man. Clin Physiol. 11(6):553–564. http://dx.doi.org/10.1111/j.1475-097X.1991.tb00675.x.
  • Elefteriades JA. 2008. Thoracic aortic aneurysm: Reading the enemy’s playbook. Yale J Biol Med. 81(4):175–186. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605304/.
  • Fatemifar F, Han HC. 2016. Effect of axial stretch on lumen collapse of arteries. J Biomech Eng. 138: 12124503–124503-6.
  • Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. 2003. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 37(4):724–32.
  • Fillinger MF, Racusin J, Baker RK, Cronenwett JL, Teutelink A, Schermerhorn ML, Zwolak RM, Powell RJ, Walsh DB, Rzucidlo EM. 2004. Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional ct scans: implications for rupture risk. J Vasc Surg. 39(6):1243–1252.
  • Finol EA, Keyhani K, Amon CH. 2003. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions. J Biomech Eng. 125(2):207–217.
  • Georgakarakos E, Ioannou CV, Kamarianakis Y, Papaharilaou Y, Kostas T, Manousaki E, Katsamouris AN. 2010. The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur J Vasc Endovasc Surg. 39(1):42–48.
  • Han HC. 2007. A biomechanical model of artery buckling. J Biomech. 40(16):3672–3678.
  • Han HC. 2009a. Blood vessel buckling within soft surrounding tissue generates tortuosity. J Biomech. 42(16):2797–2801.
  • Han HC. 2009b. The theoretical foundation for artery buckling under internal pressure. J Biomech Eng. 131(12):124501.
  • Han HC. 2012. Twisted blood vessels: Symptoms, etiology and biomechanical mechanisms. J Vascular Res. 49(3):185–197.
  • Han HC, Chesnutt JKW, Garcia JR, Liu Q, Wen Q. 2013. Artery buckling: new phenotypes, models, and applications. Ann Biomed Eng. 41(7):1399–1410.
  • Han HC, Ku DN, Vito RP. 2003. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann Biomed Eng. 31(4):403–411.
  • Hatakeyama T, Shigematsu H, Muto T. 2001. Risk factors for rupture of abdominal aortic aneurysm based on three-dimensional study. J Vascular Surg. 33(3):453–461.
  • Hirata K, Yaginuma T, O’Rourke MF, Kawakami M. 2006. Age-related changes in carotid artery flow and pressure pulses: possible implications for cerebral microvascular disease. Stroke J Cerebral Circulation. 37(10):2552–2556.
  • Holdsworth D, Norley C, Frayne R, Steinman D, Rutt B. 1999. Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol Meas. 20:219–240.
  • Huo Y, Wischgoll T, Kassab GS. 2007. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Amer J Physiol Heart Circ Physiol. 293:H2959–H2970.
  • Johnson PT, Chen JK, Loeys BL, Dietz HC, Fishman EK. 2007. Loeys-dietz syndrome: Mdct angiography findings. Amer J Roentgenology. 189(1):W29–W35.
  • Khalafvand SS, Han HC. 2015. Stability of carotid artery under steady-state and pulsatile blood flow: A fluid-structure interaction study. J Biomech Eng. 137(6):061007–061007.
  • Lee AY, Han B, Lamm SD, Fierro CA, Han HC. 2012. Effects of elastin degradation and surrounding matrix support on artery stability. Am J Physiol Heart Circ Physiol. 302(4):H873–H884.
  • Lee AY, Sanyal A, Xiao Y, Shadfan R, Han HC. 2014. Mechanical instability of normal and aneurysmal arteries. J Biomech. 47(16):3868–3875.
  • Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, Xu Y. 2006. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng Online. 5:33. doi:10.1186/1475-925X-5-33.
  • Li Z, Kleinstreuer C. 2006. Effects of blood flow and vessel geometry on wall stress and rupture risk of abdominal aortic aneurysms. J Med Eng Technol. 30(5):283–297.
  • Liu Q, Han HC. 2012. Mechanical buckling of artery under pulsatile pressure. J Biomech. 45(7):1192–1198.
  • Liu Q, Wen Q, Mottahedi M, Han HC. 2014. Artery buckling analysis using a four-fiber wall model. J Biomech. 47(11):2790–2796.
  • Marra SP, Kennedy FE, Kinkaid JN, Fillinger MF. 2006. Elastic and rupture properties of porcine aortic tissue measured using inflation testing. Cardiovasc Eng. 6(4):123–131.
  • Michineau S, Dai J, Gervais M, Zidi M, Clowes AW, Becquemin JP, Michel JB, Allaire E. 2010. Aortic length changes during abdominal aortic aneurysm formation, expansion and stabilisation in a rat model. Eur J Vasc Endovasc Surg. 40(4):468–474.
  • Milnor WR. 1989. Hemodynamics. Baltimore (MD): Williams and Wilkins.
  • Mukherjee D, Mayberry JC, Inahara T, Greig JD. 1989. The relationship of the abdominal aortic aneurysm to the tortuous internal carotid artery: is there one? Arch Surg. 124(8):955–956.
  • Perktold K, Resch M, Peter RO. 1991. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech. 24(6):409–420.
  • Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D. 2008. Abdominal aortic aneurysm risk of rupture: patient-specific fsi simulations using anisotropic model. J Biomech Eng. 131(3):031001–031001.
  • Rodríguez JF, Ruiz C, Doblaré M, Holzapfel GA. 2008. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng. 130(2):021023–021023.
  • Scotti CM, Finol EA. 2007. Compliant biomechanics of abdominal aortic aneurysms: A fluid-structure interaction study. Comput Struct. 85(11–14):1097–1113.
  • Scotti CM, Jimenez J, Muluk SC, Finol EA. 2008. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput Methods Biomech Biomed Engin. 11(3):301–322.
  • Scotti CM, Shkolnik AD, Muluk SC, Finol EA. 2005. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng OnLine. 4:64. doi:10.1186/1475-925X-4-64.
  • Stenbaek J, Kalin B, Swedenborg J. 2000. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 20(5):466–469.
  • Suh GY, Les AS, Tenforde AS, Shadden SC, Spilker RL, Yeung JJ, Cheng CP, Herfkens RJ, Dalman RL, Taylor CA. 2011. Quantification of particle residence time in abdominalaortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng. 39(2):864–883.
  • Tan FPP, Torii R, Borghi A, Mohiaddin RH, Wood NB, Xu XY. 2009. Fluid-structure interaction analysis of wall stress and flow patterns in a thoracic aortic aneurysm. Int J Appl Mech. 01(01):179–199.
  • Upchurch JGR, Schaub TA. 2006. Abdominal aortic aneurysm. Am Fam Physician. 73(7):1198–1204.
  • Vorp DA. 2007. Biomechanics of abdominal aortic aneurysm. J Biomech. 40(9):1887–1902.
  • Wang DHJ, Makaroun MS, Webster MW, Vorp DA. 2002. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg. 36(3):598–604.
  • Xenos M, Rambhia SH, Alemu Y, Einav S, Labropoulos N, Tassiopoulos A, Ricotta JJ, Bluestein D. 2010. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann Biomed Eng. 38(11):3323–3337.