695
Views
5
CrossRef citations to date
0
Altmetric
Articles

Biomechanical analysis of lumbar interbody fusion cages with various lordotic angles: a finite element study

, , , &
Pages 247-254 | Received 27 Aug 2017, Accepted 14 Feb 2018, Published online: 07 Mar 2018

References

  • Ambati DV, Wright EK, Lehman RA, Kang DG, Wagner SC, Dmitriev AE. 2015. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J. 15:1812–1822.10.1016/j.spinee.2014.06.015
  • Ayturk UM, Puttlitz CM. 2011. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Eng. 14:695–705.10.1080/10255842.2010.493517
  • Beaubien BP, Derincek A, Lew WD, Wood KB. 2005. In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, lowprofile lumbar plate and posteriorly placed pedicle screws or translaminar screws. Spine. 30:1846–1851.10.1097/01.brs.0000174275.95104.12
  • Berkson MH, Nachemson A, Schultz AB. 1979. Mechanical properties of human lumbar spine motion segments – Part II: responses in compression and shear; influence of gross morphology. J Biomech Eng. 101:53–57.10.1115/1.3426225
  • Brinckmann P, Grootenboe H. 1991. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs. Spine. 16:641–646.10.1097/00007632-199106000-00008
  • Cappuccino A, Cornwall GB, Turner A, Fogel GR, Duong HT, Kim KD, Brodke DS. 2010. Biomechanical analysis and review of lateral lumbar fusion constructs. Spine. 35:S361–S367.10.1097/BRS.0b013e318202308b
  • Choi J, Shin D, Kim S. 2016. Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: A finite element study. Spine. 42:E332–E339.
  • Chosa E, Goto K, Totoribe K, Tajima N. 2004. Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method. J Spinal Disord Tech. 17:134–139.10.1097/00024720-200404000-00010
  • Dakwar E, Cardona RF, Smith DA, Uribe JS. 2010. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurgicalfocus. 28:E8.
  • Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM, et al. 2014. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 47:1757–1766.10.1016/j.jbiomech.2014.04.002
  • Faizan A, Kiapour A, Kiapour AM, Goel VK. 2014. Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord Tech. 27:E118–E127.10.1097/BSD.0b013e3182a11478
  • Grauer JN, Biyani A, Faizan A, Kiapour A, Sairyo K, Ivanov A, Ebraheim NA, Patel TC, Goel VK. 2006. Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination. Spine J. 6:659–666.10.1016/j.spinee.2006.03.011
  • Kim KT, Lee SH, Suk KS, Lee JH, Jeong BO. 2010. Biomechanical changes of the lumbar segment after total disc replacement: Charite®, Prodisc® and Maverick® using finite element model study. J Korean Neurosurg Soc. 47:446–453.10.3340/jkns.2010.47.6.446
  • Kim HJ, Kang KT, Chang BS, Lee CK, Kim JW, Yeom JS. 2014. Biomechanical analysis of fusion segment rigidity upon stress at both the fusion and adjacent segments: a comparison between unilateral and bilateral pedicle screw fixation. Yonsei Med J. 55:1386–1394.10.3349/ymj.2014.55.5.1386
  • Kim SJ, Lee YS, Kim YB, Park SW, Hung VT. 2014. Clinical and radiological outcomes of a new cage for direct lateral lumbar interbody fusion. Korean J Spine. 11:145–151.10.14245/kjs.2014.11.3.145
  • Knight RQ, Schwaegler P, Hanscom D, Jeffery RQ. 2009. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 22:34–37.10.1097/BSD.0b013e3181679b8a
  • Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ. 2001. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. J Spine. 26:E557–E561.10.1097/00007632-200112150-00014
  • Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ. 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech. 22:377–384.10.1016/j.clinbiomech.2006.11.008
  • Schmidt H, Galbusera F, Rohlmann A, Zander T, Wilke HJ. 2012. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J. 21:663–674.10.1007/s00586-010-1382-1
  • Sembrano JN, Horazdovsky RD, Sharma AK, Yson SC, Santos EG, Polly DW. 2017. Do lordotic cages provide better segmental lordosis vs. non-lordotic cages in lateral lumbar interbody fusion (LLIF)? Clin Spine Surg. 30:E338–E343.
  • Shirazi-Adl A, Ahmed AM, Shrivastava SC. 1986. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine. 11:914–927.10.1097/00007632-198611000-00012
  • Slucky AV, Brodke DS, Bachus KN, Droge JA, Braun JT. 2006. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Spine J. 6:78–85.10.1016/j.spinee.2005.08.003
  • Uribe JS, Smith DA, Dakwar E, Baaj AA, Mundis GM, Turner AWL, Cornwall GB, Akbarnia BA. 2012. Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages in the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine. 17:476–485.10.3171/2012.8.SPINE111121
  • Uribe JS, Harris JE, Beckman JM, Turner AWL, Mundis GM, Akbarnia BA. 2015. Finite element analysis of lordosis restoration with anterior longitudinal ligament release and lateral hyperlordotic cage placement. Eur Spine J. 24:420–426.10.1007/s00586-015-3872-7
  • Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA. 2006. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion–a finite element study. Spine. 31:992–998.10.1097/01.brs.0000250177.84168.ba
  • Xiao ZT, Wang LY, Gong H, Zhu D. 2012. Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomed Eng Online. 11:31.10.1186/1475-925X-11-31
  • Zhang ZJ, Sun YT, Li Y, Liu ZH, Liu WQ. 2016. Recent advances in finite element applications in artificial lumbar disc replacement. J Biomed Sci Eng. 9:1–8.10.4236/jbise.2016.910B001
  • Zhang ZJ, Li H, Fogel GR, Liao ZH, Li Y, Liu WQ. 2017. Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis. World Neurosurg. https://doi.org/10.1016/j.wneu.2017.12.127 [Epub ahead of print].
  • Zhong ZC, Wei SH, Wang JP, Feng CK, Chen CS, Yu CH. 2006. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys. 28:90–98.10.1016/j.medengphy.2005.03.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.