178
Views
2
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis and comparison of flow fields in normal larynx and larynx with unilateral vocal fold paralysis

ORCID Icon, &
Pages 532-540 | Received 29 Jun 2017, Accepted 09 Jul 2018, Published online: 19 Jul 2018

References

  • Alipour F, Berry DA, Titze IR. 2000. A finite-element model of vocal-fold vibration. J Acoust Soc Am. 108(6):3003–3012.
  • Belytschko T, Liu WK, Moran B, Elkhodary K. 2013. Nonlinear finite elements for continua and structures. Hoboken (NJ): John Wiley & Sons.
  • de Luzan CF, Chen J, Mihaescu M, Khosla SM, Gutmark E. 2015. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx. J Biomech. 48(7):1248–1257.
  • de Vries MP, Hamburg MC, Schutte HK, Verkerke GJ, Veldman AE. 2003. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier–Stokes equations and the finite element method. J Acoust Soc Am. 113(4):2077–2083.
  • Duncan C, Zhai G, Scherer R. 2006. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods. J Acoust Soc Am. 120(5):2859–2871.
  • Erath BD, Plesniak MW. 2010. An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds. Exp Fluids. 49(1):131–146.
  • Fung Y. 2013. Biomechanics: mechanical properties of living tissues. New York (NY): Springer Science & Business Media.
  • Gökcan MK, Günaydinoğlu E, Kurtuluş DF. 2016. Effect of glottic geometry on breathing: three-dimensional unsteady numerical simulation of respiration in a case with congenital glottic web. Eur Arch Otorhinolaryngol. 273(10):3219–3229.
  • Gunter HE. 2004. Modeling mechanical stresses as a factor in the etiology of benign vocal fold lesions. J Biomech. 37(7):1119–1124.
  • Hirano M. 1977. Structure and vibratory behavior of the vocal folds. Dynamic aspects of speech production. Sawashima M, Cooper FS (Eds.). University of Tokyo Press. Tokyo (JP). pp. 13–27.
  • Khosla S, Murugappan S, Lakhamraju R, Gutmark E. 2008. Using particle imaging velocimetry to measure anterior-posterior velocity gradients in the excised canine larynx model. Ann Otol Rhinol Laryngol. 117(2):134.
  • LaMar MD, Qi Y, Xin J. 2003. Modeling vocal fold motion with a hydrodynamic semicontinuum model. J Acoust Soc Am. 114(1):455–464.
  • Little MA, Costello DA, Harries ML. 2011. Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures. J Voice. 25(1):21–31.
  • Luo H, Mittal R, Zheng X, Bielamowicz SA, Walsh RJ, Hahn JK. 2008. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation. J Comput Phys. 227(22):9303–9332.
  • Mittal R, Zheng X, Bhardwaj R, Seo, JH, Xue Q, Bielamowicz S. 2011. Toward a simulation-based tool for the treatment of vocal fold paralysis. Front Physiol. 2: 19.
  • Neubauer J, Zhang Z, Miraghaie R, Berry DA. 2007. Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds. J Acoust Soc Am. 121(2):1102–1118.
  • Oren L, Khosla S, Gutmark E. 2016. Effect of vocal fold asymmetries on glottal flow. Laryngoscope. 126(11):2534–2538.
  • Renotte C, Bouffioux V, Wilquem F. 2000. Numerical 3D analysis of oscillatory flow in the time-varying laryngeal channel. Journal of Biomechanics. 33(12):1637–1644.
  • Šidlof P, Švec JG, Horáček J, Veselý J, Klepáček I, Havlík R. 2008. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. J Biomech. 41(5):985–995.
  • Suh J, Frankel SH. 2008. Comparing turbulence models for flow through a rigid glottal model. J Acoust Soc Am. 123(3):1237–1240.
  • Švec JG, Schutte HK. 1996. Videokymography: high-speed line scanning of vocal fold vibration. J Voice. 10(2):201–205.
  • Titze IR. 1993. Vocal fold physiology: frontiers in basic science. Vol. 7. Norwich, UK: Singular Publishing Group.
  • Titze IR, Martin DW. 1998. Principles of voice production. J Acoust Soc Am. 104(3):1148–1148.
  • Titze IR, Alipour F. 2006. The myoelastic aerodynamic theory of phonation. University of Iowa (IL): National Center for Voice and Speech.
  • Triep M, Brücker C. 2010. Three-dimensional nature of the glottal jet. J Acoust Soc Am. 127(3):1537–1547.
  • Van den Berg J. 1958. Myoelastic-aerodynamic theory of voice production. J Speech Lang Hearing Res. 1(3):227–244.
  • Xue Q, Mittal R, Zheng X, Bielamowicz S. 2012. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx. J Acoust Soc Am. 132(3):1602–1613.
  • Yamauchi A, Yokonishi H, Imagawa H, Sakakibara K-I, Nito T, Tayama N, Yamasoba T. 2016. Quantification of Vocal Fold Vibration in Various Laryngeal Disorders Using High-Speed Digital Imaging. J Voice. 30(2):205–214.
  • Yang A, Lohscheller J, Berry DA, Becker S, Eysholdt U, Voigt D, Döllinger M. 2010. Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics. J Acoust Soc Am. 127(2):1014–1031.
  • Zhang Z. 2010. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. J Acoust Soc Am. 127(4):2554–2562.
  • Zheng X, Mittal R, Xue Q, Bielamowicz S. 2011. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. J Acoust Soc Am. 130(1):404–415.
  • Zörner S, Kaltenbacher M, Döllinger M. 2013. Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process. Comput Fluids. 86: 133–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.