109
Views
1
CrossRef citations to date
0
Altmetric
Article

Analysis of the influence of modelling assumptions on the prediction of the elastic properties of cardiac fibres

&
Pages 601-615 | Received 07 May 2018, Accepted 16 Jul 2018, Published online: 23 Nov 2018

References

  • Arts T, Prinzen FW, Snoeckx LH, Rijcken JM, Reneman RS. 1994. Adaptation of cardiac structure by mechanical feedback in the environment of the cell: A model study. Biophys J. 66:953–961.
  • Arts T, Reneman RS, Veenstra PC. 1979. A model of the mechanics of the left ventricle. Annals Biomed Eng. 7(3–4):299–318.
  • Avazmohammadi R, Hill MR, Simon MA, Zhang W, Sacks MS. 2017. A novel constitutive model for passive right ventricular myocardium: Evidence for myofiber–collagen fiber mechanical coupling. Comput Biomed Res. 16:561–581.
  • Azhari H, Beyar R, Sideman S. 1999. On the human left ventricular shape. Comp Biomed Res. 32(3):264–282.
  • Baghaie AR, Moghaddam HA. 2009. A consistent model for cardiac deformation estimation under abnormal ventricular muscle conditions. Paper presented at: World Congress on Medical Physics Biomedical Engineering; Sep 7–12 Munich, Germany.
  • Bagnoli P, Malagutti N, Gastaldi D, Marcelli E, Lui E, Cercenelli L, Costantino ML, Plicchi G, Fumero R. 2011. Computational finite element model of cardiac torsion. Int J Artificl Org. 34(1):44–53.
  • Barbero, E. J. 2010 Introduction to Composite Materials Design, Second Edition. Boca Raton, Florida, USA:CRC Press.
  • Carrick R, Ge L, Lee LC, Zhang Z, Mishra R, Axel L, Guccione JM, Grossi EA, Ratcliffe MB. 2012. Patient-specific finite element-based analysis of ventricular myofiber stress after coapsys: importance of residual stress. Ann Thorac Surg. 93:1964–1971.
  • Chanda A, Ghoneim H. 2015. Pumping potential of a two-layer left-ventricle-like flexible-matrix-composite structure. Comp Struct. 122:570–575.
  • Cherubini C, Filippi S, Nardinocchi P, Teresi L. 2008. An electromechanical model of cardiac tissue: Constitutive issues and electrophysiological effects. Prog Biophy Mol Bio. 97(2):562–573.
  • Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H. 2011. Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog Biophys Mol Bio. 104(1):22–48.
  • Dierberger B, Brändle M, Gülch RW, Jacob R. 1991. Significance of geometrical reference models of the left ventricle for a new concept of evaluation of cardiac pumping function. Basic Res Cardio. 86(2):186–196.
  • Dorri F (2004) A finite element model of the human left ventricular systole, taking into account the fibre orientation pattern [dissertation]. Zurich: ETH Zurich.
  • Gao H, Li WG, Cai L, Berry C, Luo XY. 2015 Parameter estimation in a Holzapfel-Ogden law for healthy myocardium. J Eng Math. 95:231–248.
  • Göktepe S, Acharya SNS, Wong J, Kuhl E. 2011. Computational modeling of passive myocardium. Int J for Numer Meth in Biomed Eng. 27(1):1–12.
  • Guccione JM, McCulloch AD, Waldman LK. 1991. Mechanics of active contraction in cardiac muscle: Part II-Cylindrical models of the systolic left ventricle. J Biomech Eng. 113:42–55.
  • Guccione JM, Waldman LK, McCulloch AD. 1993. Mechanics of active contraction in cardiac muscle: Part ii–cylindrical models of the systolic left ventricle. J Biomech Eng. 115:82–90.
  • Guccione JM, Costa KD, McCulloch AD. 1995. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J Biomech. 28(10):1167–1177.
  • Hadjicharalambous M, Lee J, Smith NP, Nordsletten DA. 2014. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics. Comp Meth App Mech Eng. 274:213–236.
  • Hassaballah A, Hassan M, Mardi A, Hamdi M. 2015. Modeling the effects of myocardial fiber architecture and material properties on the left ventricle mechanics during rapid filling phase. Eur J Echocardiogr App Math Info Sci. 9(1):161.
  • Ho SY. 2009. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. Euro J Echocardio. 10:iii3–iii7.
  • Humphrey JD. 2013. Cardiovascular solid mechanics: cells, tissues, and organs. New York, USA:Springer Science & Business Media.
  • Janz RF, Grimm AF. 1972. Finite-element model for the mechanical behavior of the left ventricle. Prediction of deformation in the potassium-arrested rat heart. Circ Res. 30:244–252.
  • Jhun CS, Wenk JF, Zhang S, Wall ST, Sun K, Sabbah HN, Ratcliffe MB, Guccione JM. 2010. Effect of adjustable passive constraint on the failing left ventricle: A finite-element model study. Ann Thorac Surg. 89(1):132–137.
  • Kroon W, Delhaas T, Bovendeerd P, Arts T. 2009. Computational analysis of the myocardial structure: Adaptation of cardiac myofiber orientations through deformation. Med Image Anal. 13(2):346–353.
  • Lee LC, Genet M, Dang AB, Ge L, Guccione JM, Ratcliffe MB. 2014 Applications of computational modeling in cardiac surgery. J Card Surg. 29(3):293–302.
  • LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. 1995. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. American J Physiol-Heart Cir Phy. 269(2):H571–H582.
  • Lumens J, Delhaas T, Kirn B, Arts T. 2009 The law of Laplace. Its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Ann Biomed Eng. 37(11):2234–2255.
  • Moriarty TF. 1980. The law of Laplace, its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Circ Res. 46:321–331.
  • Nordsletten DA, Niederer SA, Nash MP, Hunter PJ, Smith NP. 2011. Coupling multi-physics models to cardiac mechanics. Prog Biophy Mol Biol. 104(1):77–88.
  • Pravdin S. 2013. Nonaxisymmetric mathematical model of the cardiac left ventricle anatomy. Russian J Biomech 17(4):75–94.
  • Riley MB, Whitney JM. 1966. Elastic properties of fiber reinforced composite materials. AIAA J. 4(9):1537–1542.
  • Schmid H, Nash MP, Young AA, Hunter PJ. 2006. Myocardial material parameter estimation-a comparative study for simple shear. J Biomech Eng. 128:742–750.
  • Schmid H, Callaghan PO, Nash MP, Lin W, LeGrice IJ, Smaill BH, Young AA, Hunter PJ. 2008 Myocardial material parameter estimation: A non-homogeneous finite element study from simple shear tests. Biomech Model Mechanobio. 7:161–173.
  • Schmid H, Wang YK, Ashton J, Ehret AE, Krittian SBS, Nash MP, Hunter PJ. 2009. Myocardial material parameter estimation: A comparison of invariant based orthotropic constitutive equations. Comp Meth Biomech Biomed Eng. 12:283–295.
  • Streeter DD, Bassett DL. 1966. An engineering analysis of myocardial fiber orientation in pig's left ventricle in systole. Anatom Rec. 155:503–511.
  • Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. 1969. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 24(3):339–347.
  • Taber LA, Yang M, Podszus WW. 1996. Mechanics of ventricular torsion. J Biomech. 29(6):745–752.
  • Trayanova NA, Rice JJ. 2011. Cardiac electromechanical models: From cell to organ. Front Physiol. 2:43.
  • Tsai SW, Pagano NJ. 1968. Invariant Properties of Composite Materials. Composite Materials Workshop. Stamford (CT): Technomic Publishing Co.; p. 233–253.
  • van Dalen BM, Kauer F, Vletter WB, Soliman OI I, van der Zwaan HB, ten Cate FJ, Geleijnse ML. 2010. Influence of cardiac shape on left ventricular twist. J Appl Physiol. 108:146–151.
  • Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. 2012. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface. 9:1–19.
  • Vetter FJ, McCulloch AD. 2000. Three-dimensional stress and strain in passive rabbit left ventricle: A model study. Ann Biomed Eng. 28(7):781–792.
  • Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM. 2005. Theoretical impact of the injection of material into the myocardium: A finite element model simulation. American J Physiol-Heart Circ Physiol. 289(2):H692–H700.
  • Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. 2006. Theoretical impact of the injection material into myocardium. Circulation. 114(24):2627–2635.
  • Wall ST, Guccione JM, Ratcliffe MB, Sundnes JS. 2012. Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: A finite element model study. American J Physiol-Heart Circ Physiol. 302(1):H206–H214.
  • Watanabe H, Sugiura S, Kafuku H, Hisada T. 2004. Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Clin Exp Pharmacol Physiol. 87(3):2074–2085.
  • Weinheimer CJ, Lai L, Kelly DP, Kovacs A. 2015. Novel mouse model of left ventricular pressure overload and infarction causing predictable ventricular remodelling and progression to heart failure. Clin Exp Pharm Physiol. 42(1):33–40.
  • Wenk JF, Ge L, Zhang Z, Soleimani M, Potter DD, Wallace AW, Tseng E, Ratcliffe MB, Guccione JM. 2013 A coupled biventricular finite element and lumped-parameter circulatory system model of heart failure. Comp Meth Biomech Biomed Eng. 16:807–818.
  • Yin FC. 1981. Ventricular wall stress. Circ Res. 49(4):829–842.
  • You LH, Zhang JJ, You XY. 2005. Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. Int J Pres V Pip. 82(5):347–354.
  • Zhang Z, Tendulkar A, Sun K, Saloner DA, Wallace AW, Ge L, Guccione JM, Ratcliffe MB. 2011. Comparison of the Young-Laplace law and finite element based calculation of ventricular wall stress: Implications for postinfarct and surgical ventricular remodeling. Ann Thorac Surg. 91(1):150–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.