203
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A multiscale investigation of mechanical properties of bio-inspired scaffolds

, &
Pages 703-711 | Received 18 May 2018, Accepted 13 Aug 2018, Published online: 27 Oct 2018

References

  • Aryal S, Matsunaga K, Ching W-Y. 2015. Ab initio simulation of elastic and mechanical properties of Zn-and Mg-doped hydroxyapatite (HAP). J Mech Behav Biomed Mater. 47:135–146.
  • Babensee JE, Anderson JM, McIntire LV, Mikos AG. 1998. Host response to tissue engineered devices. Adv Drug Deliv Rev. 33(1–2):111–139.
  • Bose S, Roy M, Bandyopadhyay A. 2012. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30(10):546–554.
  • Ching W, Rulis P, Misra A. 2009. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater. 5(8):3067–3075.
  • Chowdhury M, Islam M, Ibna Zahid Z. 2016. Finite element modeling of compressive and splitting tensile behavior of plain concrete and steel fiber reinforced concrete cylinder specimens. Adv Civ Eng. 2016:1–11.
  • Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 2015. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 47:237–247.
  • Deymier AC, Nair AK, Depalle B, Qin Z, Arcot K, Drouet C, Yoder CH, Buehler MJ, Thomopoulos S, Genin GM. 2017. Protein-free formation of bone-like apatite: new insights into the key role of carbonation. Biomaterials. 127:75–88.
  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV. 2011. Bone regeneration: current concepts and future directions. BMC Med. 9(1):66.
  • Do AV, Khorsand B, Geary SM, Salem AK. 2015. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 4(12):1742–1762.
  • Frost HM. 1994. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 64(3):175–188.
  • Gallegos-Nieto E, Medellín-Castillo HI, de Lange DF. 2015. A complete structural performance analysis and modelling of hydroxyapatite scaffolds with variable porosity. Comput Methods Biomech Biomed Engin. 18(11):1225–1237.
  • Gibson LJ, Ashby MF. 1999. Cellular solids: structure and properties. Cambridge (MA): Cambridge university press.
  • Gilmore R, Katz J. 1982. Elastic properties of apatites. J Mater Sci. 17(4):1131–1141.
  • Gross KA, Rodrı́guez-Lorenzo LM. 2004. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials. 25(20):4955–4962.
  • Hughes JM, Cameron M, Crowley KD. 1989. Structural variations in natural F, OH, and Cl apatites. Am Mineral. 74(7–8):870–876.
  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA. 2014. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 35(13):4026–4034.
  • Katz J, Ukraincik K. 1971. On the anisotropic elastic properties of hydroxyapatite. J Biomech. 4(3):221–227.
  • Koutsopoulos S. 2002. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res Part A. 62(4):600–612.
  • Li S. 2008. Boundary conditions for unit cells from periodic microstructures and their implications. Compos Sci Technol. 68(9):1962–1974.
  • Menéndez-Proupin E, Cervantes-Rodríguez S, Osorio-Pulgar R, Franco-Cisterna M, Camacho-Montes H, Fuentes M. 2011. Computer simulation of elastic constants of hydroxyapatite and fluorapatite. J Mech Behav Biomed Mater. 4(7):1011–1020.
  • Mueller B. 2012. Additive manufacturing technologies–rapid prototyping to direct digital manufacturing. Assembly Automation. 32(2):1–18.
  • Nagels J, Stokdijk M, Rozing PM. 2003. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg. 12(1):35–39.
  • Nair AK, Gautieri A, Chang S-W, Buehler MJ. 2013. Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun. 4:1724.
  • Niinomi M, Nakai M. 2011. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011:1–11.
  • Oryan A, Alidadi S, Moshiri A, Maffulli N. 2014. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 9(1):18.
  • Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. 2006. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 27(35):5892–5900.
  • Pasteris JD. 2016. A mineralogical view of apatitic biomaterials. Am Mineral. 101(12):2594–2610.
  • Paul CD. 2015. Interface Property of Collagen and Hydroxyapatite in Bone and Developing Bioinspired Materials. Inquiry: The University of Arkansas Undergraduate Research Journal. 19:1–10.
  • Puleo D, Nanci A. 1999. Understanding and controlling the bone–implant interface. Biomaterials. 20(23–24):2311–2321.
  • Raimondi MT, Eaton SM, Laganà M, Aprile V, Nava MM, Cerullo G, Osellame R. 2013. Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater. 9(1):4579–4584.
  • Ramesh N, Moratti SC, Dias GJ. 2018. Hydroxyapatite–polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater. 106(5): 2046–2057.
  • Ren F, Case E, Morrison A, Tafesse M, Baumann M. 2009. Resonant ultrasound spectroscopy measurement of Young's modulus, shear modulus and Poisson's ratio as a function of porosity for alumina and hydroxyapatite. Philos Mag. 89(14):1163–1182.
  • Rice RW. 1998. Porosity of ceramics: properties and applications. Boca Raton (FL):CRC Press.
  • Ridzwan M, Shuib S, Hassan A, Shokri A, Ibrahim MM. 2007. Problem of stress shielding and improvement to the hip implant designs: a review. J Med Sci. 7(3):460–467.
  • Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A. 2013. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8):7591–7621.
  • Schijve J. 2001. Fatigue of structures and materials. New York (NY): Springer.
  • Shepherd JH, Shepherd DV, Best SM. 2012. Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med. 23(10):2335–2347.
  • Šupová M. 2015. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 41(8):9203–9231.
  • Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kruth J-P, Schrooten J. 2012. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 8(7):2824–2834.
  • Zhu C, Pongkitwitoon S, Qiu J, Thomopoulos S, Xia Y. 2018. Design and fabrication of a hierarchically structured scaffold for tendon‐to‐bone repair. Adv Mater. 30 (16):1707306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.