1,436
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study

, &
Pages 55-63 | Received 18 Apr 2018, Accepted 19 Sep 2018, Published online: 06 Nov 2018

References

  • Arnet U, Drongelen S, Scheel-Sailer A, Woude L, Veeger D. 2012. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia. J Rehabil Med. 44(3):222–228.
  • Arnet U, Van Drongelen S, Veeger DJ, van der Woude LHV. 2013. Force application during handcycling and handrim wheelchair propulsion: An initial comparison. J Appl Biomech. 29(6):687–695.
  • Arnet U, van Drongelen S, van der Woude LHV, Veeger DHEJ. 2012. Shoulder load during handcycling at different incline and speed conditions. Clin Biomech (Bristol, Avon)). 27(1):1–6.
  • Arnold EM, Delp SL. 2011. Fibre operating lengths of human lower limb muscles during walking. Philos Trans R Soc Lond, B, Biol Sci. 366(1570):1530–1539.
  • Boninger ML, Souza AL, Cooper RA, Fitzgerald SG, Koontz AM, Fay BT. 2002. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Arch Phys Med Rehabil. 83(5):718–723.
  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. 2007. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 54(11):1940–1950.
  • Desroches G, Dumas R, Pradon D, Vaslin P, Lepoutre F-X, Chèze L. 2010. Upper limb joint dynamics during manual wheelchair propulsion. Clin Biomech (Bristol, Avon)). 25(4):299–306.
  • Bednarczyk JH, Sanderson DJ. 1995. Limitations of kinematics in the assessment of wheelchair propulsion in adults and children with spinal cord injury. Phys Ther. 75(4):281–289.
  • Gil-Agudo Ã, Solis-Mozos M, Segura-Fragoso A, Jimenez-Diaz F. 2014. Echographic and kinetic changes in the shoulder joint after manual wheelchair propulsion under two different workload settings. Front Bioeng Biotechnol. 2: 77.
  • Goosey VL, Campbell IG, Fowler NE. 2000. Effect of push frequency on the economy of wheelchair racers. Med Sci Sports Exerc. 32(1):174–181.
  • Hairer E, Nørsett SP, Wanner G. 2008. Solving Ordinary Differential Equations I: Nonstiff Problems.Springer Science & Business Media.
  • Holzbaur KRS, Murray WM, Delp SL. 2005. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 33(6):829–840.
  • Kautz SA, Hull ML. 1995. Dynamic optimization analysis for equipment setup problems in endurance cycling. J Biomech. 28(11):1391–1401.
  • Koontz AM, Cooper R A, Boninger ML, Souza AL, Fay BT. 2002. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion. J Rehabil Res Dev. 39:635–649.
  • Kraaijenbrink C, Vegter RJK, van der Woude LHV. 2017. Different cadences and resistances in submaximal synchronous handcycling in able-bodied men: effects on efficiency and force application. PLoS One. 12: e0183502.
  • Kwarciak AM, Sisto SA, Yarossi M, Price R, Komaroff E, Boninger ML. 2009. Redefining the Manual Wheelchair Stroke Cycle: identification and impact of nonpropulsive pushrim contact. Arch Phys Med Rehabil. 90(1):20–26.
  • Jayaraman C, Beck CL, Sosnoff JJ. 2015. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion. J Biomech. 48:3937–3944.
  • Lin J-T, Huang M, Sprigle S. 2015. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test. J Rehabil Res Dev. 52(7):763–774.
  • Mercer JL, Boninger M, Koontz A, Ren D, Dyson-Hudson T, Cooper R. 2006. Shoulder joint kinetics and pathology in manual wheelchair users. Clin Biomech (Bristol, Avon)). 21(8):781–789.
  • Morrow MM, Rankin JW, Neptune RR, Kaufman KR. 2014. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion. J Biomech. 47(14):3459–3465.
  • Mukherjee G, Samanta A. 2001. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems. J Rehabil Res Dev. 38(4):391–399.
  • Mulroy SJ, Gronley JK, Newsam CJ, Perry J. 1996. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons. Arch Phys Med Rehabil. 77(2):187–193.
  • Pandy MG, Anderson FC, Hull DG. 1992. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J Biomech Eng. 114(4):450–460.
  • Rankin JW, Kwarciak AM, Mark Richter W, Neptune RR. 2010. The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion. J Biomech. 43(14):2771–2779.
  • Rankin JW, Kwarciak AM, Richter WM, Neptune RR. 2012. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study. Clin Biomech (Bristol, Avon)). 27(9):879–886.
  • Rankin JW, Neptune RR. 2008. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. J Biomech. 41(7):1494–1502.
  • Rankin JW, Neptune RR. 2012. Musculotendon lengths and moment arms for a three-dimensional upper-extremity model. J Biomech. 45(9):1739–1744.
  • Rankin JW, Richter WM, Neptune RR. 2011. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion. J Biomech. 44(7):1246–1252.
  • Rao SS, Bontrager EL, Gronley JK, Newsam CJ, Perry J. 1996. Three-dimensional kinematics of wheelchair propulsion. IEEE Trans Rehabil Eng. 4(3):152–160.
  • Richter WM, Rodriguez R, Woods KR, Axelson PW. 2007. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds. Arch Phys Med Rehabil. 88(1):81–87.
  • Russell IM, Raina S, Requejo PS, Wilcox RR, Mulroy S, McNitt-Gray JL. 2015. Modifications in Wheelchair Propulsion Technique with Speed. Front Bioeng Biotechnol. 3:171.
  • Saul KR, Hu X, Goehler CM, Vidt ME, Daly M, Velisar A, Murray WM. 2015. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Engin. 18(13):1445–1458.
  • Schantz P, Björkman P, Andersson E. 1999. Movement and muscle activity pattern in wheelchair ambulation by persons with para-and tetraplegia. Scand JRehabil Med. 3167–76.
  • Von Seggern DH. 2016. CRC standard curves and surfaces with mathematica, 3rd ed. New York: Chapman and Hall/CRC.
  • Sharif Shourijeh M, McPhee J. 2014. Forward dynamic optimization of human gait simulations: a global parameterization approach. J Comput Nonlinear Dynam. 9(3):031018.
  • Slowik JS, McNitt-Gray JL, Requejo PS, Mulroy SJ, Neptune RR. 2016. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: a simulation study. Clin Biomech (Bristol, Avon)). 3334–41.
  • Smith PA, Glaser RM, Petrofsky JS, Underwood PD, Smith GB, Richard JJ. 1983. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses. Arch Phys Med Rehabil. 64(6):249–254.
  • Thelen DG. 2003. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng. 125(1):70.
  • Vanlandewijck Y, Theisen D, Daly D. 2001. Wheelchair propulsion biomechanics: implications for wheelchair sports. Sports Med. 31(5):339–367.
  • Wei SH, Huang SL, Chiu JC. 2003. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain. Clin Biomech. 18:S46–S52.
  • van der Woude L, Dallmeijer A, Veeger D. 2001. Alternative modes of manual wheelchiar ambulation: an overview. Am J Phys Med Rehabil. 80: 765–777.
  • van der Woude LH, Veeger HE, Dallmeijer AJ, Janssen TW, Rozendaal LA. 2001. Biomechanics and physiology in active manual wheelchair propulsion. Med Eng Phys. 23(10):713–733.