531
Views
9
CrossRef citations to date
0
Altmetric
Articles

Finite element analysis of titanium alloy-graphene based mandible plate

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 324-330 | Received 06 Jun 2018, Accepted 29 Nov 2018, Published online: 09 Jan 2019

References

  • Atilgan S, Erol B, Yardimeden A, Yaman F, Ucan MC, Gunes N, Atalay Y, Kose I. 2010. A three dimensional analysis of reconstruction plates used in different mandibular defects. Biotechnol Biotec EQ. 24(2):1893–1896. doi: 10.2478/V10133-010-0048-9
  • Azevedo CRF, Hippert E. 2002. Failure analysis of surgical implants in Brazil. Eng Failure Anal. 9(6):621–633. doi: 10.1016/S1350-6307(02)00026-2
  • Bakshi SR, Lahiri D, Agarwal A. 2010. Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev. 55(1):41–64. doi: 10.1179/095066009X12572530170543
  • Chen G, Schmutz B, Wullschleger M, Pearcy MJ, Schuetz MA. 2010. Computational investigations of mechanical failures of internal plate fixation. Proc Inst Mech Eng H. 224(1):119–126. doi: 10.1243/09544119JEIM670
  • Gu M, Liu Y, Chen T, Du F, Zhao X, Xiong C, Zhou Y. 2014. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering. Tissue Eng Part B Rev. 20(5):477–491. doi: 10.1089/ten.teb.2013.0638
  • Gutwald R, Jaeger R, Lambers FM. 2017. Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Comput Methods Biomech Biomed Eng. 20(4):426–435. doi: 10.1080/10255842.2016.1240788
  • Jindal P, Goyal M, Kumar N. 2014. Mechanical characterization of multiwalled carbon nanotubes-polycarbonate composites. Materials (Basel). 54:864–868. doi: 10.1016/j.matdes.2013.08.100
  • Jindal P, Jyoti J, Kumar N. 2016. Mechanical characterisation of ABS/MWCNT composites under static and dynamic loading conditions. Beilstein J Nanotechnol. 10(3):2288–2299.
  • Jindal P, Pande S, Sharma P, Mangla V, Chaudhury A, Patel D, Singh BP, Mathur RB, Goyal M. 2013. High strain rate behavior of multi-walled carbon nanotubes–polycarbonate composites. Composites Part B: Eng. 45(1):417–422. doi: 10.1016/j.compositesb.2012.06.018
  • Jindal P, Sain M, Kumar N. 2015. Mechanical characterization of PMMA/MWCNT composites under static and dynamic loading conditions. Mater Today: Proc. 2(4–5):1364–1372. doi: 10.1016/j.matpr.2015.07.055
  • Li Z, Young RJ, Wilson NR, Kinloch IA, Vallés C, Li Z. 2016. Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos Sci Technol. 123:125–133. doi: 10.1016/j.compscitech.2015.12.005
  • Liu H, Brinson LC. 2008. Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Technol. 68(6):1502–1512. doi: 10.1016/j.compscitech.2007.10.033
  • Liu X, Metcalf TH, Robinson JT, Perkins FK, Houston BH. 2012. Internal friction and shear modulus of graphene films. In: Internal friction and mechanical spectroscopy; solid state phenomena, vol. 184. Switzerland: Trans Tech Publications; p. 319–324. doi: 10.4028/www.scientific.net/SSP.184.319
  • Mahathi N, Azariah E, Ravindran C. 2013. Finite element analysis comparison of plate designs in managing fractures involving the mental foramen. Craniomaxillofac Trauma Reconstr. 6(2):93–98. doi:10.1055/s-0033-1343789
  • Mathur RB, Chatterjee S, Singh BP. 2008. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol. 68(7–8):1608–1615. doi: 10.1016/j.compscitech.2008.02.020
  • Mathur RB, Pande S, Singh BP, Dhami TL. 2008. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polymer Compos. 29(7):717–727. doi: 10.1002/pc
  • Niinomi M. 1998. Mechanical properties of biomedical titanium alloys. Mater Sci Eng. 243:231–236. doi: 10.1016/S0921-5093(97)00806-X
  • Pacifici L, De Angelis F, Orefici A, Cielo A. 2016. Metals used in maxillofacial surgery. Mater Sci Eng. 9(2):107–111. doi: 10.11138/orl/2016.9.1S.107
  • Papageorgiou DG, Kinloch IA, Young RJ. 2017. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 90:75–127. doi: 10.1016/j.pmatsci.2017.07.004
  • Papakyriacou M, Mayer H, Pypen C. 2000. Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials. Int J Fatigue. 22:873–886. doi: 10.1016/S0142-1123(00)00057-8
  • Podila R, Moore T, Alexis F, Rao A. 2013. Graphene coatings for biomedical implants. J Vis Exp. 73:1–9. doi: 10.3791/50276
  • Politano A, Chiarello G. 2015. Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: a comparative study. Nano Res. 8(6):1847–1856. doi: 10.1007/s12274-014-0691-9
  • Potenza M, Cataldo A, Bovesecchi G, Corasaniti S, Coppa P, Bellucci S. 2017. Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method. AIP Advances 7(7):075214. doi: 10.1063/1.4995513
  • Raabe D, Alemzadeh K, Harrison AJL, Ireland AJ. 2009. The chewing robot: a new biologically-inspired way to evaluate dental restorative materials. Conf Proc IEEE Eng Med Biol Soc. 2009:6050–6053. doi: 10.1109/IEMBS.2009.5332590
  • Rangel Goulart D, Takanori Kemmoku D, Noritomi PY, de Moraes M. 2015. Development of a titanium plate for mandibular angle fractures with a bone defect in the lower border: Finite element analysis and mechanical test. J Oral Maxillofac Res. 6(3):1–7. doi: 10.5037/jomr.2015.6305
  • Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M. 2017. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 46:4400–4416. doi: 10.1039/C7CS00363C
  • Sakhaee-Pour A. 2009. Elastic properties of single-layered graphene sheet. Solid State Commun. 149(1–2):91–95. doi: 10.1016/j.ssc.2008.09.050
  • Wang Q, Dai J, Li W, Wei Z, Jiang J. 2008. The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Composites Sci Technol. 68(7–8):1644–1648. doi: 10.1016/j.compscitech.2008.02.024
  • Zheng C, Zhou X, Cao H, Wang G, Liu Z. 2014. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Source. 258:290–296. doi: 10.1016/j.jpowsour.2014.01.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.