259
Views
4
CrossRef citations to date
0
Altmetric
Articles

Computational investigations on the hemodynamic performance of a new swirl generator in bifurcated arteries

&
Pages 364-375 | Received 25 Jul 2018, Accepted 01 Dec 2018, Published online: 20 Jan 2019

References

  • Ahmed SA, Giddens DP. 1984. Pulsatile poststenotic flow studies with laser Doppler anemometry. J Biomech. 17(9):695–705.
  • Arzani A, Gambaruto AM, Chen G, Shadden SC. 2017. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows. Biomech Model Mechanobiol. 16(3):787–803.
  • Balossino R, Pennati G, Migliavacca F, Formaggia L, Veneziani A, Tuveri M, Dubini G. 2009. Influence of boundary conditions on fluid dynamics in models of the cardiovascular system: a multiscale approach applied to the carotid bifurcation. Comput Meth Biomech Biomed Eng. 12:1–13.
  • Banks J, Bressloff N. 2007. Turbulence modeling in three-dimensional stenosed arterial bifurcations. J Biomech Eng. 129(1):40–50.
  • Basavaraja P, Surendran A, Gupta A, Saba L, Laird JR, Nicolaides A, Mtui EE, Baradaran H, Lavra F, Suri JS. 2017. Wall shear stress and oscillatory shear index distribution in carotid artery with varying degree of stenosis: a hemodynamic study. J Mech Med Biol. 17(02):1750037.
  • Berger S, Jou L-D. 2000. Flows in stenotic vessels. Annu Rev Fluid Mech. 32(1):347–382.
  • Caro CG, Cheshire NJ, Watkins N. 2005. Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J Royal Soc Interface. 2(3):261–266.
  • Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL. 1996. Non-planar curvature and branching of arteries and non-planar-type flow. Proc R Soc Lond A. 452(1944):185–197.
  • Caro CG, Seneviratne A, Heraty KB, Monaco C, Burke MG, Krams R, Chang CC, Coppola G, Gilson P. 2013. Intimal hyperplasia following implantation of helical-centreline and straight-centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow. J Royal Soc Interface. 10(89):20130578.
  • Chen WX, Poon EK, Hutchins N, Thondapu V, Barlis P, Ooi A. 2017. Computational fluid dynamics study of common stent models inside idealised curved coronary arteries. Comput Methods in BiomeCh Biomed Eng. 20(6):671–681.
  • Chiastra C, Gallo D, Tasso P, Iannaccone F, Migliavacca F, Wentzel JJ, Morbiducci U. 2017. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: a computational exploration of the hemodynamic risk. J Biomech. 58:79–88.
  • Gallo D, Steinman DA, Bijari PB, Morbiducci U. 2012. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J Biomech. 45(14):2398–2404.
  • Gataulin YA, Zaitsev DK, Smirnov EM, Fedorova EA, Yukhnev AD. 2015. Weakly swirling flow in a model of blood vessel with stenosis: Numerical and experimental study. St Petersburg Polytechnical University Journal: Physics and Mathematics. 1(4):364–371.
  • Ha H, Choi W, Lee SJ. 2015. Beneficial fluid-dynamic features of pulsatile swirling flow in 45 end-to-side anastomosis. Med Eng Phy. 37(3):272–279.
  • Ha H, Choi W, Park H, Lee SJ. 2015. Effect of swirling blood flow on vortex formation at post-stenosis. Proc Inst Mech Eng H. 229(2):175–183.
  • Ha H, Hwang D, Choi W-R, Baek J, Lee SJ. 2014. Fluid-dynamic optimal design of helical vascular graft for stenotic disturbed flow. PloS One. 9(10):e111047.
  • Ha H, Lee S-J. 2013. Hemodynamic features and platelet aggregation in a stenosed microchannel. Microvascular Research. 90:96–105.
  • Ha H, Lee SJ. 2014. Effect of pulsatile swirling flow on stenosed arterial blood flow. Med Eng Phys. 36(9):1106–1114.
  • Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li X-M, Friedman MH. 2004. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol. 286(5):H1916–H1922.
  • Hoi Y, Wasserman BA, Xie YJ, Najjar SS, Ferruci L, Lakatta EG, Gerstenblith G, Steinman DA. 2010. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas. 31(3):291.
  • Houston JG, Gandy SJ, Milne W, Dick JB, Belch JJ, Stonebridge PA. 2004. Spiral laminar flow in the abdominal aorta: a predictor of renal impairment deterioration in patients with renal artery stenosis?. Nephrol Dial Transplant. 19(7):1786–1791.
  • Huang Y, Teng Z, Sadat U, Graves MJ, Bennett MR, Gillard JH. 2014. The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses. J Biomech. 47(6):1465–1471.
  • Hunt J, Hussain F. 1991. A note on velocity, vorticity and helicity of inviscid fluid elements. J Fluid Mech. 229(1):569–587.
  • Jiménez JM, Davies PF. 2009. Hemodynamically driven stent strut design. Ann Biomed Eng. 37(8):1483–1494.
  • Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. 1993. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 88(5 Pt 1):2235–2247.
  • Kolář V. 2007. Vortex identification: new requirements and limitations. Int J Heat Fluid Flow. 28(4):638–652.
  • Ku DN, Giddens DP. 1983. Pulsatile flow in a model carotid bifurcation. Arteriosclerosis. 3:31–39.
  • Ku DN, Giddens DP, Zarins CK, Glagov S. 1985. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5:293–302.
  • Lantz J, Henriksson L, Persson A, Karlsson M, Ebbers T. 2016. Patient-specific simulation of cardiac blood flow from high-resolution computed tomography. J Biomech Eng. 138(12):121004.
  • Lee KE, Lee JS, Yoo JY. 2011. A numerical study on steady flow in helically sinuous vascular prostheses. Med Eng Phys. 33(1):38–46.
  • Lee S-W, Steinman DA. 2007. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J Biomech Eng. 129(2):273–278.
  • Liang H, Maxworthy T. 2005. An experimental investigation of swirling jets. J Fluid Mech. 525:115–159.
  • Linge F, Hye MA, Paul MC. 2014. Pulsatile spiral blood flow through arterial stenosis. Comput Methods Biomech Biomed Engin. 17(15):1727–1737.
  • Liu X, Sun A, Fan Y, Deng X. 2015. Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann Biomed Eng. 43(1):3–15.
  • Ma P, Li X, Ku DN. 1997. Convective mass transfer at the carotid bifurcation. J Biomech. 30(6):565–571.
  • Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, Del Maschio A, Montevecchi FM, Redaelli A. 2009. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng. 37(3):516.
  • Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi FM, Redaelli A. 2011. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech Model Mechanobiol. 10(3):339–355.
  • Mukherjee D, Padilla J, Shadden SC. 2016. Numerical investigation of fluid–particle interactions for embolic stroke. Theor Comput Fluid Dyn. 30(1-2):23–39.
  • Paul MC, Larman A. 2009. Investigation of spiral blood flow in a model of arterial stenosis. Med Eng Phys. 31(9):1195–1203.
  • Perktold K, Resch M, Peter RO. 1991. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J Biomech. 24(6):409–420.
  • Pinto S, Campos J. 2016. Numerical study of wall shear stress-based descriptors in the human left coronary artery. Comput Methods Biomech Biomed Eng. 19(13):1443–1455.
  • Prashantha B, Anish S. 2018. Discrete-Phase modelling of an asymmetric stenosis artery under different womersley numbers. Arab J Sci Eng. 1:15.
  • Schulz UG, Rothwell PM. 2001. Major variation in carotid bifurcation anatomy: a possible risk factor for plaque development?. Stroke. 32(11):2522–2529.
  • Soulis JV, Lampri OP, Fytanidis DK, Giannoglou GD. Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta. Proceedings of the Biomedical Engineering, 2011. 10th International Workshop on; 2011: IEEE.
  • Steinman DA, Poepping TL, Tambasco M, Rankin RN, Holdsworth DW. 2000. Flow patterns at the stenosed carotid bifurcation: effect of concentric versus eccentric stenosis. Ann Biomed Eng. 28(4):415–423.
  • Stonebridge P, Brophy C. 1991. Spiral laminar flow in arteries? Lancet. 338(8779):1360–1361.
  • Stonebridge P, Buckley C, Thompson A, Dick J. 2004. Non spiral and spiral (helical) flow patterns in stenoses: in vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling. International Angiology. 23:276.
  • Sullivan TM, Zeller T, Nakamura M, Caro CG, Lichtenberg M. 2018. Swirling flow and wall shear: evaluating the biomimics 3d helical centerline stent for the femoropopliteal segment. Int J Vasc Med. 2018:10.
  • Sun A, Fan Y, Deng X. 2010. Numerical comparative study on the hemodynamic performance of a new helical graft with noncircular cross section and swirlgraft. Artificial Organs. 34(1):22–27.
  • Tan F, Soloperto G, Bashford S, Wood N, Thom S, Hughes A, Xu X. 2008. Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models. J Biomech Eng. 130(6):061008.
  • Van Canneyt K, Morbiducci U, Eloot S, De Santis G, Segers P, Verdonck P. 2013. A computational exploration of helical arterio-venous graft designs. J Biomech. 46(2):345–353.
  • Varghese SS, Frankel SH, Fischer PF. 2007. Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech. 582:253–280.
  • Varghese SS, Frankel SH, Fischer PF. 2008. Modeling transition to turbulence in eccentric stenotic flows. J Biomech Eng. 130(1):014503.
  • Wen J, Zheng T, Jiang W, Deng X, Fan Y. 2011. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. Asaio J. 57(5):399–406.
  • WHO 2016. Hearts: technical package for cardiovascular disease management in primary health care. World health organisation ed.
  • Wong KKL, Cheung SCP, Yang W, Tu J. 2010. Numerical simulation and experimental validation of swirling flow in spiral vortex ventricular assist device. Int J Artif Organs. 33(12):856–867.
  • Zeller T, Gaines PA, Ansel GM, Caro CG. 2016. Helical centerline stent improves patency: two-year results from the randomized mimics trial. Circ: Cardiovasc Interv.9:e002930.
  • Zheng T, Wen J, Jiang W, Deng X, Fan Y. 2014. Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft. Comput Methods Biomech Biomed Eng. 17(5):549–559.
  • Zovatto L, Pedrizzetti G. 2017. Fluid flow in a helical vessel in presence of a stenosis. Meccanica. 52(3):545–553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.