366
Views
5
CrossRef citations to date
0
Altmetric
Articles

Non-rigid deformation to include subject-specific detail in musculoskeletal models of CP children with proximal femoral deformity and its effect on muscle and contact forces during gait

, , , , &
Pages 376-385 | Received 20 Dec 2017, Accepted 07 Dec 2018, Published online: 22 Jan 2019

References

  • Andersen MS, de Zee M, Dendorfer S, MacWilliams B, Rasmussen J. 2009. Validation of a detailed lower extremity model based on the klein horsman data set. In: Proceedings of the 12th International Symposium on Computer Simulation in Biomechanics; July 2–4; Cape Town, South Africa. p. 27–28.
  • Anderson FC, Pandy MG. 2001. Static and dynamic optimization solutions for gait are practically equivalent. J Biomech. 34(2):153–161.
  • Arnold AS, Salinas S, Asakawa DJ, Delp SL. 2000. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg. 5(2):108–119.
  • Arnold EM, Ward SR, Lieber RL, Delp SL. 2010. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 38(2):269–279.
  • Bartels W, Demol J, Gelaude F, Jonkers I, Vander Sloten J. 2015. Computed tomography-based joint locations affect calculation of joint moments during gait when compared to scaling approaches. Comput Methods Biomech Biomed Eng. 18(11):1238–1251.
  • Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. 2001. Hip contact forces and gait patterns from routine activities. J Biomech. 34(7):859–871.
  • Besl PJ, McKay ND. 1992. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 14(2):239–256.
  • Blemker SS, Asakawa DS, Gold GE, Delp SL. 2007. Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imag. 25(2):441–451.
  • Bookstein FL. 1989. Principal warps: thin-plates splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell. 11(6):567–585.
  • Bosmans L, Valente G, Wesseling M, Van Campen A, De Groote F, De Schutter J, Jonkers I. 2015. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. J Biomech. 48(10):2116–2123.
  • Bosmans L, Wesseling M, Desloovere K, Molenaers G, Scheys L, Jonkers I. 2014. Hip contact force in presence of aberrant bone geometry during normal and pathological gait. J Orthop Res. 32(11):1406–1415.
  • Carbone V, van der Krogt MM, Koopman HFJM, Verdonschot N. 2012. Sensitivity of subject-specific models to errors in musculo-skeletal geometry. J Biomech. 45(14):2476–2480.
  • Carriero A, Zavatsky A, Stebbins J, Theologis T, Lenaerts G, Jonkers I, Shefelbine SJ. 2012. Influence of altered gait patterns on the hip joint contact forces. Comput Methods Biomech Biomed Eng. 17(4):37–41.
  • Chen Z, Zhang Z, Wang L, Li D, Zhang Y, Jin Z. 2016. Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty. Med Eng Phys. 38(8):708–716.
  • Correa TA, Baker R, Graham HK, Pandy MG. 2011. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. J Biomech. 44(11):2096–2105.
  • Correa TA, Crossley KM, Kim HJ, Pandy MG. 2010. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech. 43(8):1618–1622.
  • Damm P, Bender A, Bergmann G. 2015. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking. PLoS One. 10(3):e0120438.
  • Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. 2006. Analysis of musculoskeletal systems in the anybody modeling system. Simul Model Pract Theory. 14(8):1100–1111.
  • Danckaers F, Huysmans T, Lacko D, Ledda A, Verwulgent S, Van Dongen S, Sijbers J. 2014. Correspondence preserving elastic surface registration with shape model prior. Proc Int Conf Pattern Recognit. 22:2143–2148.
  • De Groote F, De Laet T, Jonkers I, De Schutter J. 2008. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. J Biomech. 41(16):3390–3398.
  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. 2007. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 54(11):1940–1950.
  • Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. 1990. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 37(8):757–767.
  • Fabry G, MacEwen G, Shands A. 1973. Torsion of the femur. A follow-up study in normal and abnormal conditions . J Bone Joint Surg Am. 55(8):1726–1738.
  • Hainisch R, Gfoehler M, Zubayer-Ul-Karim M, Pandy MG. 2012. Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data. Multibody Syst Dyn. 28(1–2):143–156.
  • Hausselle J, Assi A, El Helou A, Jolivet E, Pillet H, Dion E, Bonneau D, Skalli W. 2012. Subject-specific musculoskeletal model of the lower limb in a lying and standing position. Comput Methods Biomech Biomed Eng. 17:37–41.
  • Lenaerts G, Bartels W, Gelaude F, Mulier M, Spaepen A, Van der Perre G, Jonkers I. 2009. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait. J Biomech. 42(9):1246–1251.
  • Marra MA, Vanheule V, Rasmussen J, Verdonschot N, Andersen MS. 2016. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J Biomech Eng:137:1–12.
  • Martelli S, Valente G, Viceconti M, Taddei F. 2015. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location. Comput Methods Biomech Biomed Eng. 18:1–9.
  • Mellon SJ, Grammatopoulos G, Andersen MS, Pegg EC, Pandit HG, Murray DW, Gill HS. 2013. Individual motion patterns during gait and sit-to-stand contribute to edge-loading risk in metal-on-metal hip resurfacing. Proc Inst Mech Eng H. 227(7):799–810.
  • Modenese L, Ceseracciu E, Reggiani M, Lloyd DG. 2016. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. J Biomech. 49(2):141–148.
  • Modenese L, Phillips ATM, Bull AMJ. 2011. An open source lower limb model: hip joint validation. J Biomech. 44(12):2185–2193.
  • Pellikaan P, van der Krogt MM, Carbone V, Fluit R, Vigneron LM, Van Deun J, Verdonschot N, Koopman HFJM. 2014. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity. J Biomech. 47(5):1144–1150.
  • Scheys L, Desloovere K, Suetens P, Jonkers I. 2011. Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion. J Biomech. 44(7):1346–1353.
  • Scheys L, Jonkers I, Loeckx D, Maes F. 2006. Image based musculoskeletal modeling allows personalized biomechanical analysis of gait. Lect Notes Comput Sci. 4072:58–66.
  • Scheys L, Loeckx D, Spaepen A, Suetens P, Jonkers I. 2009. Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study. J Biomech. 42(5):565–572.
  • Scheys L, Spaepen A, Suetens P, Jonkers I. 2008. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture. 28(4):640–648.
  • Scheys L, Van Campenhout A, Spaepen A, Suetens P, Jonkers I. 2008. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths. Gait Posture. 28(3):358–365.
  • Steele KM, Demers MS, Schwartz MH, Delp SL. 2012. Compressive tibiofemoral force during crouch gait. Gait Posture. 35(4):556–560.
  • Tsai L-C, Colletti PM, Powers CM. 2012. Magnetic resonance imaging-measured muscle parameters improved knee moment prediction of an EMG-driven model. Med Sci Sports Exerc. 44(2):305–312.
  • Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F. 2014. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?. PLoS One. 9(11):e112625.
  • Wesseling M, De Groote F, Bosmans L, Bartels W, Meyer C, Desloovere K, Jonkers I. 2016. Subject-specific geometrical detail rather than cost function formulation affects hip loading calculation. Comput Methods Biomech Biomed Eng. 19(14):1475–1488.
  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, et al. 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 35(4):543–548.
  • Yamaguchi GT, Zajac FE. 1989. A planar model of the knee joint to characterize the knee extensor mechanism. J Biomech. 22(1):1–10.
  • Zippel H. 1971. Untersuchungen ZUT normalentwicklung der formelemente am huftgelenk im wachstumsalter. Beitr Orthop Traumatol. 18:255–270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.