1,409
Views
51
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection

, , , , &
Pages 620-630 | Received 25 Sep 2018, Accepted 29 Jan 2019, Published online: 01 Mar 2019

References

  • Ab Naim WNW, Ganesan PB, Sun Z, Liew YM, Qian Y, Lee C-J, Jansen S, Hashim SA, Lim E. 2016. Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection: a preliminary study using CFD approach. Appl Math Model. 40(4):3115–3127.
  • Alimohammadi M, Pichardo-Almarza C, Agu O, Diaz-Zuccarini V. 2016. Development of a patient-specific multi-scale model to understand atherosclerosis and calcification locations: comparison with in vivo data in an aortic dissection. Front Physiol. 7:238.
  • Alimohammadi M, Sherwood JM, Karimpour M, Agu O, Balabani S, Diaz-Zuccarini V. 2015. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models. Biomed Eng Online. 14:34.
  • Bit A, Ghagare D, Rizvanov AA, Chattopadhyay H. 2017. Assessment of influences of stenoses in right carotid artery on left carotid artery using wall stress marker. BioMed Res Int. 2017:1.
  • Brown AG, Shi Y, Marzo A, Staicu C, Valverde I, Beerbaum P, Lawford PV, Hose DR. 2012. Accuracy vs. computational time: translating aortic simulations to the clinic. J Biomech. 45(3):516–523.
  • Burns MP, DePaola N. 2005. Flow-conditioned HUVECs support clustered leukocyte adhesion by coexpressing ICAM-1 and E-selectin. Am J Physiol Heart Circ Physiol. 288(1):H194–H204.
  • Caballero AD, Laín S. 2013. A review on computational fluid dynamics modelling in human thoracic aorta. Cardiovasc Eng Technol. 4(2):103–130.
  • Chen D, Müller-Eschner M, von Tengg-Kobligk H, Barber D, Böckler D, Hose R, Ventikos Y. 2013. A patient-specific study of type-B aortic dissection: evaluation of true-false lumen blood exchange. Biomed Eng Online. 12:65
  • Cheng Z, Juli C, Wood NB, Gibbs RG, Xu XY. 2014. Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements. Med Eng Phys. 36(9):1176–1184.
  • Cheng Z, Wood NB, Gibbs RG, Xu XY. 2015. Geometric and flow features of type B aortic dissection: initial findings and comparison of medically treated and stented cases. Ann Biomed Eng. 43(1):177–189.
  • Chien S, Usami S, Dellenback RJ, Gregersen MI. 1967. Blood viscosity: influence of erythrocyte deformation. Science. 157(3790):827–829.
  • Chien S, Usami S, Dellenback RJ, Gregersen MI, Nanninga LB, Guest MM. 1967. Blood viscosity: influence of erythrocyte aggregation. Science. 157(3790):829–831.
  • Dill DB, Costill DL. 1974. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 37(2):247–248.
  • Dillon-Murphy D, Noorani A, Nordsletten D, Figueroa CA. 2016. Multi-modality image-based computational analysis of haemodynamics in aortic dissection. Biomech Model Mechanobiol. 15(4):857–876. Aug
  • Gallo D, Lefieux A, Morganti S, Veneziani A, Reali A, Auricchio F, Conti M, Morbiducci U. 2016. A patient-specific follow up study of the impact of thoracic endovascular repair (TEVAR) on aortic anatomy and on post-operative hemodynamics. Comput Fluids. 141:54–61.
  • Gao F, Watanabe M, Matsuzawa T. 2006. Stress analysis in a layered aortic arch model under pulsatile blood flow. Biomed Eng Online. 5(1):25.
  • Gijsen F, Allanic E, Van de Vosse F, Janssen J. 1999. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube. J Biomech. 32(7):705–713.
  • Jung J, Hassanein A. 2008. Three-phase CFD analytical modeling of blood flow. Med Eng Phys. 30(1):91–103.
  • Jung J, Hassanein A, Lyczkowski RW. 2006. Hemodynamic computation using multiphase flow dynamics in a right coronary artery. Ann Biomed Eng. 34(3):393.
  • Jung J, Lyczkowski RW, Panchal CB, Hassanein A. 2006. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech. 39(11):2064–2073.
  • Karmonik C, Partovi S, Müller-Eschner M, Bismuth J, Davies MG, Shah DJ, Loebe M, Böckler D, Lumsden AB, von Tengg-Kobligk H. 2012. Longitudinal computational fluid dynamics study of aneurysmal dilatation in a chronic DeBakey type III aortic dissection. J Vasc Surg. 56(1):260–263. e261.
  • Khanafer K, Berguer R. 2009. Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech. 42(16):2642–2648.
  • Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA. 2009. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng. 37(11):2153–2169.
  • Liu X, Fan Y, Deng X, Zhan F. 2011. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech. 44(6):1123–1131.
  • Meng H, Tutino V, Xiang J, Siddiqui A. 2014. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 35(7):1254–1262.
  • Morris L, Delassus P, Callanan A, Walsh M, Wallis F, Grace P, McGloughlin T. 2005. 3-D numerical simulation of blood flow through models of the human aorta. J Biomech Eng. 127(5):767–775.
  • Nerem R, Seed W, Wood N. 1972. An experimental study of the velocity distribution and transition to turbulence in the aorta. J Fluid Mech. 52(01):137–160.
  • Pritchard WF, Davies PF, Derafshi Z, Polacek DC, Tsao R, Dull RO, Jones SA, Giddens DP. 1995. Effects of wall shear stress and fluid recirculation on the localization of circulating monocytes in a three-dimensional flow model. J Biomech. 28(12):1459–1469.
  • Qiao A, Yin W, Chu B. 2015. Numerical simulation of fluid-structure interaction in bypassed DeBakey III aortic dissection. Comput Methods Biomech Biomed Eng. 18(11):1173–1180.
  • Schiller L. 1933. Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z Ver Deut Ing. 77:318–326.
  • Scotti CM, Shkolnik AD, Muluk SC, Finol EA. 2005. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online. 4(1):64.
  • Shuib A, Hoskins P, Easson W. 2011. Experimental investigation of particle distribution in a flow through a stenosed artery. J Mech Sci Technol. 25(2):357–364.
  • Sun Z, Chaichana T. 2016. A systematic review of computational fluid dynamics in type B aortic dissection. Int J Cardiol. 210:28–31.
  • Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C. 2008. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. J Biomech. 41(4):727–736.
  • Taylor CA, Hughes TJ, Zarins CK. 1998. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng. 26(6):975–987.
  • Tiwari P, Antal SP, Burgoyne A, Belfort G, Podowski MZ. 2004. Multifield computational fluid dynamics model of particulate flow in curved circular tubes. Theor Comput Fluid Dyn. 18(2-4):205–220.
  • Tse KM, Chiu P, Lee HP, Ho P. 2011. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech. 44(5):827–836.
  • Wan Ab Naim WN, Ganesan PB, Sun Z, Chee KH, Hashim SA, Lim E. 2014. A perspective review on numerical simulations of hemodynamics in aortic dissection. Sci World J. 2014:652520.
  • Xie H, Zhang Y. 2017. The effect of red blood cells on blood heat transfer. Int J Heat Mass Transf. 113:840–849.
  • Yeleswarapu K, Kameneva M, Rajagopal K, Antaki J. 1998. The flow of blood in tubes: theory and experiment. Mech Res Commun. 25(3):257–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.