246
Views
9
CrossRef citations to date
0
Altmetric
Articles

Mathematical modelling of ciliary propulsion of an electrically-conducting Johnson-Segalman physiological fluid in a channel with slip

, , &
Pages 685-695 | Received 05 Nov 2018, Accepted 10 Feb 2019, Published online: 04 Mar 2019

References

  • Akbar NS, Tripathi D, Anwar Bég O, Khan ZH. 2016. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field. Acta Astronaut (UK). 1281–12.
  • Akbar NS, Tripathi D, Anwar Bég O. 2017. MHD convective heat transfer of nanofluids through a ciliated tube with buoyancy: A study of nano-particle shape effects. Adv Powder Technol. 28(2):453–462.
  • Akbar NS, Tripathi D, Khan ZH, Anwar Bég O. 2018. Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia. Math Biosci. 301:121–128.
  • Ally J, Roa W, Amirfazli A. 2008. Use of mucolytics to enhance magnetic particle retention at a model airway surface. J Magn Magn Mater. 320(12):1834–1843.
  • Anwar Bég O. 2018. Biomimetic propulsion analogies- aerodynamics of small fliers and microscale beating in internal propulsion, Technical Report, Aero-Mech 3, 94pp, April, University of Salford, Manchester, UK.
  • Anwar Bég O. 2018. Multi-physical electro-magnetic propulsion fluid dynamics: mathematical modelling and computation. In: W. Willis and Seth Sparks, editors, Mathematical modeling: methods, applications and research. New York: Nova Science; Chapter 1, 1–88.
  • Atencia J, Beebe DJ. 2004. Magnetically-driven biomimetic micro pumping using vortices . Lab Chip. 4(6):598–602.
  • Blake J. 1973. Flow in tubules due to ciliary activity. Bull Math Biol. 35(4):513–523.
  • Bottier M, Blanchon S, Pelle G, Bequignon E, Isabey D, Coste A, Escudier E, Grotberg JB, Papon J-F, Filoche M, Louis B. 2017. A new index for characterizing microbead motion in a flow induced by ciliary beating: Part I, experimental analysis. PLoS Comput Biol. 13(7):e1005605.
  • Brennen C. 1974. An oscillating-boundary-layer theory for ciliary propulsion. J Fluid Mech. 65(4):799–824.
  • Chattopadhyay G, Usha R, Sahu KC. 2017. Core-annular miscible two-fluid flow in a slippery pipe: a stability analysis. Phys Fluids. 29(9):097106.
  • Chaube MK, Tripathi D, Bég OA, Sharma S, Pandey VS. 2015. Peristaltic creeping flow of power law physiological fluids through a non-uniform channel with slip effect. Appl Bionics Biomech. 2015:1.
  • Colantonio JR, Vermot J, Wu D, Langenbacher AD, Fraser S, Chen J-N, Hill KL. 2009. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature. 457(7226):205–209.
  • Dauptain A, Favier J, Bottaro A. 2008. Hydrodynamics of ciliary propulsion. J Fluids Struct. 24(8):1156–1165.
  • Elshahed M, Haroun MH. 2005. Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field. Math Prob Eng. 2005(6):663–677.
  • Franchi F, Lazzari B, Nibbi R. 2015. The J–S model versus a non-ideal MHD theory. Phys Lett A. 379(22–23):1431–1436.
  • Gheber L, Priel Z. 1990. On metachronism in ciliary systems: a model describing the dependence of the metachronal wave properties on the intrinsic ciliary parameters. Cell Motil Cytoskeleton. 16(3):167–181.
  • Ghosh S, Usha R, Sahu KC. 2014a. Double-diffusive two-fluid flow in a slippery channel: a linear stability analysis. Phys Fluids. 26(12):127101.
  • Ghosh S, Usha R, Sahu KC. 2014b. Linear stability analysis of miscible two-fluid flow in a channel with velocity slip at the walls. Phys Fluids. 26(1):014107.
  • Ghosh S, Usha R, Sahu KC. 2015. Absolute and convective instabilities in double-diffusive two-fluid flow in a slippery channel. Chem Eng Sci. 134:1–11.
  • Hayat T, Javed M, Asghar S. 2008. MHD peristaltic motion of Johnson–Segalman fluid in a channel with compliant walls. Phys Lett A. 372(30):5026–5036.
  • Hayat T, Mahomed FM, Asghar S. 2005. Peristaltic flow of a magnetohydrodynamic Johnson–Segalman fluid. Nonlinear Dyn. 40(4):375–385.
  • Hayat T, Wang Y, Siddiqui AM, Hutter K. 2003. Peristaltic motion of Johnson–Segalman fluid in a planar channel. Math Prob Eng. 2003(1):1–23.
  • Hoque MM, Alam MM, Ferdows M, Bég OA. 2013. Numerical simulation of Dean number and curvature effects on magneto-biofluid flow through a curved conduit. Proc Inst Mech Eng H. 227(11):1155–1170.
  • Horst CJ, Johnson LV, Besharse JC. 1990. Transmembrane assemblage of the photoreceptor connecting cilium and motile cilium transition zone contain a common immunologic epitope. Cell Motil Cytoskeleton. 17(4):329–344.
  • Johnson MW, Jr, Segalman D. 1977. A model for viscoelastic fluid behavior which allows non-affine deformation. J Non-Newtonian Fluid Mech. 2(3):255–270.
  • Kothandapani M, Prakash J. 2015. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J Magn Magn Mater. 378152–163.
  • Lardner TJ, Shack WJ, Waibel E. 1970. A survey of reproductive biology. Report to The Pathfinder Fund, Dept. of Mech. Eng., MIT, USA.
  • Lardner TJ, Shack WJ. 1972. Cilia transport. Bull. Math. Biophys. 34(3):325–335.
  • Lauga E, Powers TR. 2009. The hydrodynamics of swimming microorganisms. Rep Prog Phys. 72(9):096601.
  • Lighthill J. 1975. Mathematical biofluid dynamics. Philadelphia: SIAM.
  • Maqbool K, Shaheen S, Mann AB. 2016. Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube. Springerplus. 5(1):1379–1395.
  • Nadeem S, Akbar NS. 2011. Influence of heat and mass transfer on the peristaltic flow of a Johnson– Segalman fluid in a vertical asymmetric channel with induced MHD. J Taiwan Inst Chem Eng. 42(1):58–66.
  • Narla VK, Tripathi D, Anwar Bég O, Kadir A. 2018. Modelling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel. J Eng Math. 111:127–143.
  • Nayfeh AH. 2008. Perturbation methods. New Year: Wiley.
  • Purcell EM. 1977. Life at low Reynolds number. Am J Phys. 45(1):3–11.
  • Ramesh K, Anwar Bég O, Tripathi D. 2018. Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids. Propuls Power Res. In press.
  • Ramos A. 2008. Electrohydrodynamic and magneto-hydrodynamic micropumps, In: Hardt S, Schönfeld F, editors. Microfluidics technologies for miniaturized analysis systems. Boston: Springer; p. 59–116.
  • Sadiqui AM, Farooq AA, Rana MA. 2014. Hydromagnetic flow of Newtonian fluid due to ciliary motion in the channel. Magnetohydrodynamics. 50:109–122.
  • Sajid M, Ali N, Bég OANWAR, Siddiqui AM. 2017. Swimming of a singly flagellated micro-organism in a magnetohydrodynamic second order fluid. J Mech Med Biol. 17(1):1750009.
  • Sanderson MJ, Sleigh MA. 1981. Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J Cell Sci. 47331–347.
  • Sleigh MA. 1962. The Biology of Cilia and Flagella. New York: MacMillan.
  • Sturgis SH. 1947. The effect of ciliary current on sperm progress in excised human fallopian tubes. Trans Amer Soc Study Steril. 3:31–39.
  • Tripathi D, Anwar Bég O. 2015. Peristaltic transport of Maxwell viscoelastic fluids with a slip condition: Homotopy analysis of gastric transport. J Mech Med Biol. 15(3):1550021–1550022.
  • Tripathi D, Bég OA, Curiel-Sosa J. 2014. Homotopy semi-numerical simulation of peristaltic flow of generalized Oldroyd-B fluids with slip effects. Comput Methods Biomech Biomed Eng. 17(4):433–442.
  • Uddin MJ, Alginahi Y, Bég OA, Kabir MN. 2016a. Numerical solutions for nonlinear gyrotactic bioconvection in nanofluid saturated porous media with Stefan blowing and multiple slip effects. Comput Math Appl. 72(10):2562–2581.
  • Uddin MJ, Khan WA, Ismail AIM, Anwar Bég O. 2016b. Computational study of three-dimensional stagnation point nanofluid bio-convection flow on a moving surface with anisotropic slip and thermal jump effects. ASME J Heat Transfer. 138(10):104502.
  • Wanner A, Salathé M, O'Riordan TG. 1996. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 154(6):1868–1902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.